Advanced Search
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Dajiang LEI, Jianyang TANG, Zhixing LI, Yu WU. Sparse Multinomial Logistic Regression Algorithm Based on Centered Alignment Multiple Kernels Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2735-2741. doi: 10.11999/JEIT190426
Citation: Dajiang LEI, Jianyang TANG, Zhixing LI, Yu WU. Sparse Multinomial Logistic Regression Algorithm Based on Centered Alignment Multiple Kernels Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2735-2741. doi: 10.11999/JEIT190426

Sparse Multinomial Logistic Regression Algorithm Based on Centered Alignment Multiple Kernels Learning

doi: 10.11999/JEIT190426
Funds:  The Chongqing Innovative Project of Overseas Study(cx2018120), The National Social Science Foundation of China(17XFX013), The Natural Science Foundation of Chongqing(cstc2015jcyjA40018)
  • Received Date: 2019-06-11
  • Rev Recd Date: 2020-03-28
  • Available Online: 2020-08-27
  • Publish Date: 2020-11-16
  • As a generalized linear model, Sparse Multinomial Logistic Regression (SMLR) is widely used in various multi-class task scenarios. SMLR introduces Laplace priori into Multinomial Logistic Regression (MLR) to make its solution sparse, which allows the classifier to embed feature selection in the process of classification. In order to solve the problem of non-linear data classification, Kernel Sparse Multinomial Logistic Regression (KSMLR) is obtained by kernel trick. KSMLR can map nonlinear feature data into high-dimensional and even infinite-dimensional feature spaces through kernel functions, so that its features can be fully expressed and eventually classified effectively. In addition, the multi-kernel learning algorithm based on centered alignment is used to map the data in different dimensions through different kernel functions. Then center-aligned similarity can be used to select flexibly multi-kernel learning weight coefficients, so that the classifier has better generalization ability. The experimental results show that the sparse multinomial logistic regression algorithm based on center-aligned multi-kernel learning is superior to the conventional classification algorithm in classification accuracy.
  • loading
  • ZHOU Changjun, WANG Lan, ZHANG Qiang, et al. Face recognition based on PCA and logistic regression analysis[J]. Optik, 2014, 125(20): 5916–5919. doi: 10.1016/j.ijleo.2014.07.080
    WARNER P. Ordinal logistic regression[J]. Journal of Family Planning and Reproductive Health Care, 2008, 34(3): 169–170. doi: 10.1783/147118908784734945
    LIU Wu, FOWLER J E, and ZHAO Chunhui. Spatial logistic regression for support-vector classification of hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 439–443. doi: 10.1109/LGRS.2017.2648515
    ABRAMOVICH F and GRINSHTEIN V. High-dimensional classification by sparse logistic regression[J]. IEEE Transactions on Information Theory, 2019, 65(5): 3068–3079. doi: 10.1109/TIT.2018.2884963
    CARVALHO C M, CHANG J, LUCAS J E, et al. High-dimensional sparse factor modeling: Applications in gene expression genomics[J]. Journal of the American Statistical Association, 2008, 103(484): 1438–1456. doi: 10.1198/016214508000000869
    GALAR M, FERNÁNDEZ A, BARRENECHEA E, et al. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognition, 2011, 44(8): 1761–1776. doi: 10.1016/j.patcog.2011.01.017
    曾志强, 吴群, 廖备水, 等. 一种基于核SMOTE的非平衡数据集分类方法[J]. 电子学报, 2009, 37(11): 2489–2495. doi: 10.3321/j.issn:0372-2112.2009.11.024

    ZENG Zhiqiang, WU Qun, LIAO Beishui, et al. A classfication method for imbalance data set based on kernel SMOTE[J]. Acta Electronica Sinica, 2009, 37(11): 2489–2495. doi: 10.3321/j.issn:0372-2112.2009.11.024
    CAO Faxian, YANG Zhijing, REN Jinchang, et al. Extreme sparse multinomial logistic regression: A fast and robust framework for hyperspectral image classification[J]. Remote Sensing, 2017, 9(12): 1255. doi: 10.3390/rs9121255
    LIU Tianzhu, GU Yanfeng, JIA Xiuping, et al. Class-specific sparse multiple kernel learning for spectral–spatial hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7351–7365. doi: 10.1109/TGRS.2016.2600522
    FANG Leyuan, WANG Cheng, LI Shutao, et al. Hyperspectral image classification via multiple-feature-based adaptive sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1646–1657. doi: 10.1109/TIM.2017.2664480
    OUYED O and ALLILI M S. Feature weighting for multinomial kernel logistic regression and application to action recognition[J]. Neurocomputing, 2018, 275: 1752–1768. doi: 10.1016/j.neucom.2017.10.024
    徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175–184. doi: 10.3969/j.issn.0372-2112.2018.01.024

    XU Jinhuan, SHEN Yu, LIU Pengfei, et al. Hyperspectral image classification combining kernel sparse multinomial logistic regression and TV-L1 error rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175–184. doi: 10.3969/j.issn.0372-2112.2018.01.024
    SCHÖLKOPF B and SMOLA A J. Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge: MIT Press, 2002.
    汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037

    WANG Hongqiao, SUN Fuchun, CAI Yanning, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037
    GÖNEN M and ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12: 2211–2268.
    GU Yanfeng, LIU Tianzhu, JIA Xiuping, et al. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3235–3247. doi: 10.1109/TGRS.2015.2514161
    RAKOTOMAMONJY A, BACH F R, CANU S, et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9: 2491–2521.
    LOOSLI G and ABOUBACAR H. Using SVDD in SimpleMKL for 3D-Shapes filtering[C]. CAp - Conférence D'apprentissage, Saint-Etienne, 2017. doi: 10.13140/2.1.3091.3605.
    JAIN A, VISHWANATHAN S V N, and VARMA M. SPF-GMKL: Generalized multiple kernel learning with a million kernels[C]. The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012: 750–758. doi: 10.1145/2339530.2339648.
    BAHMANI S, BOUFOUNOS P T, and RAJ B. Learning model-based sparsity via projected gradient descent[J]. IEEE Transactions on Information Theory, 2016, 62(4): 2092–2099. doi: 10.1109/TIT.2016.2515078
    CORTES C, MOHRI M, and ROSTAMIZADEH A. Algorithms for learning kernels based on centered alignment[J]. Journal of Machine Learning Research, 2012, 13(28): 795–828.
    CHENG Chunyuan, HSU C C, and CHENG Muchen. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2254–2262. doi: 10.1021/ie900521b
    YANG Hongjun and LIU Jinkun. An adaptive RBF neural network control method for a class of nonlinear systems[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 457–462. doi: 10.1109/JAS.2017.7510820
    BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542
    KRISHNAPURAM B, CARIN L, FIGUEIREDO M A T, et al. Sparse multinomial logistic regression: Fast algorithms and generalization bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 957–968. doi: 10.1109/tpami.2005.127
    CHEN Xi, LIN Qihang, KIM S, et al. Smoothing proximal gradient method for general structured sparse regression[J]. The Annals of Applied Statistics, 2012, 6(2): 719–752. doi: 10.1214/11-aoas514
    LECUN Y, BENGIO Y and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    PÉREZ-ORTIZ M, GUTIÉRREZ P A, SÁNCHEZ-MONEDERO J, et al. A study on multi-scale kernel optimisation via centered kernel-target alignment[J]. Neural Processing Letters, 2016, 44(2): 491–517. doi: 10.1007/s11063-015-9471-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(4)

    Article Metrics

    Article views (1808) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return