Citation: | Dajiang LEI, Jianyang TANG, Zhixing LI, Yu WU. Sparse Multinomial Logistic Regression Algorithm Based on Centered Alignment Multiple Kernels Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2735-2741. doi: 10.11999/JEIT190426 |
ZHOU Changjun, WANG Lan, ZHANG Qiang, et al. Face recognition based on PCA and logistic regression analysis[J]. Optik, 2014, 125(20): 5916–5919. doi: 10.1016/j.ijleo.2014.07.080
|
WARNER P. Ordinal logistic regression[J]. Journal of Family Planning and Reproductive Health Care, 2008, 34(3): 169–170. doi: 10.1783/147118908784734945
|
LIU Wu, FOWLER J E, and ZHAO Chunhui. Spatial logistic regression for support-vector classification of hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 439–443. doi: 10.1109/LGRS.2017.2648515
|
ABRAMOVICH F and GRINSHTEIN V. High-dimensional classification by sparse logistic regression[J]. IEEE Transactions on Information Theory, 2019, 65(5): 3068–3079. doi: 10.1109/TIT.2018.2884963
|
CARVALHO C M, CHANG J, LUCAS J E, et al. High-dimensional sparse factor modeling: Applications in gene expression genomics[J]. Journal of the American Statistical Association, 2008, 103(484): 1438–1456. doi: 10.1198/016214508000000869
|
GALAR M, FERNÁNDEZ A, BARRENECHEA E, et al. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognition, 2011, 44(8): 1761–1776. doi: 10.1016/j.patcog.2011.01.017
|
曾志强, 吴群, 廖备水, 等. 一种基于核SMOTE的非平衡数据集分类方法[J]. 电子学报, 2009, 37(11): 2489–2495. doi: 10.3321/j.issn:0372-2112.2009.11.024
ZENG Zhiqiang, WU Qun, LIAO Beishui, et al. A classfication method for imbalance data set based on kernel SMOTE[J]. Acta Electronica Sinica, 2009, 37(11): 2489–2495. doi: 10.3321/j.issn:0372-2112.2009.11.024
|
CAO Faxian, YANG Zhijing, REN Jinchang, et al. Extreme sparse multinomial logistic regression: A fast and robust framework for hyperspectral image classification[J]. Remote Sensing, 2017, 9(12): 1255. doi: 10.3390/rs9121255
|
LIU Tianzhu, GU Yanfeng, JIA Xiuping, et al. Class-specific sparse multiple kernel learning for spectral–spatial hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7351–7365. doi: 10.1109/TGRS.2016.2600522
|
FANG Leyuan, WANG Cheng, LI Shutao, et al. Hyperspectral image classification via multiple-feature-based adaptive sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1646–1657. doi: 10.1109/TIM.2017.2664480
|
OUYED O and ALLILI M S. Feature weighting for multinomial kernel logistic regression and application to action recognition[J]. Neurocomputing, 2018, 275: 1752–1768. doi: 10.1016/j.neucom.2017.10.024
|
徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175–184. doi: 10.3969/j.issn.0372-2112.2018.01.024
XU Jinhuan, SHEN Yu, LIU Pengfei, et al. Hyperspectral image classification combining kernel sparse multinomial logistic regression and TV-L1 error rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175–184. doi: 10.3969/j.issn.0372-2112.2018.01.024
|
SCHÖLKOPF B and SMOLA A J. Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge: MIT Press, 2002.
|
汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037
WANG Hongqiao, SUN Fuchun, CAI Yanning, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037
|
GÖNEN M and ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12: 2211–2268.
|
GU Yanfeng, LIU Tianzhu, JIA Xiuping, et al. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3235–3247. doi: 10.1109/TGRS.2015.2514161
|
RAKOTOMAMONJY A, BACH F R, CANU S, et al. SimpleMKL[J]. Journal of Machine Learning Research, 2008, 9: 2491–2521.
|
LOOSLI G and ABOUBACAR H. Using SVDD in SimpleMKL for 3D-Shapes filtering[C]. CAp - Conférence D'apprentissage, Saint-Etienne, 2017. doi: 10.13140/2.1.3091.3605.
|
JAIN A, VISHWANATHAN S V N, and VARMA M. SPF-GMKL: Generalized multiple kernel learning with a million kernels[C]. The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012: 750–758. doi: 10.1145/2339530.2339648.
|
BAHMANI S, BOUFOUNOS P T, and RAJ B. Learning model-based sparsity via projected gradient descent[J]. IEEE Transactions on Information Theory, 2016, 62(4): 2092–2099. doi: 10.1109/TIT.2016.2515078
|
CORTES C, MOHRI M, and ROSTAMIZADEH A. Algorithms for learning kernels based on centered alignment[J]. Journal of Machine Learning Research, 2012, 13(28): 795–828.
|
CHENG Chunyuan, HSU C C, and CHENG Muchen. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes[J]. Industrial & Engineering Chemistry Research, 2010, 49(5): 2254–2262. doi: 10.1021/ie900521b
|
YANG Hongjun and LIU Jinkun. An adaptive RBF neural network control method for a class of nonlinear systems[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 457–462. doi: 10.1109/JAS.2017.7510820
|
BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542
|
KRISHNAPURAM B, CARIN L, FIGUEIREDO M A T, et al. Sparse multinomial logistic regression: Fast algorithms and generalization bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 957–968. doi: 10.1109/tpami.2005.127
|
CHEN Xi, LIN Qihang, KIM S, et al. Smoothing proximal gradient method for general structured sparse regression[J]. The Annals of Applied Statistics, 2012, 6(2): 719–752. doi: 10.1214/11-aoas514
|
LECUN Y, BENGIO Y and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
PÉREZ-ORTIZ M, GUTIÉRREZ P A, SÁNCHEZ-MONEDERO J, et al. A study on multi-scale kernel optimisation via centered kernel-target alignment[J]. Neural Processing Letters, 2016, 44(2): 491–517. doi: 10.1007/s11063-015-9471-0
|