Advanced Search
Volume 42 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
Zhengyi LIU, Junlei LIU, Peng ZHAO. RGBD Image Co-saliency Object Detection Based on Sample Selection[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2277-2284. doi: 10.11999/JEIT190393
Citation: Zhengyi LIU, Junlei LIU, Peng ZHAO. RGBD Image Co-saliency Object Detection Based on Sample Selection[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2277-2284. doi: 10.11999/JEIT190393

RGBD Image Co-saliency Object Detection Based on Sample Selection

doi: 10.11999/JEIT190393
Funds:  The Provincial Natural Science Foundation of Anhui(1908085MF182), The National Natural Science Foundation of China(61602004)
  • Received Date: 2019-06-03
  • Rev Recd Date: 2020-03-01
  • Available Online: 2020-06-27
  • Publish Date: 2020-09-27
  • Co-saliency object detection aims to discover common and salient objects in an image group which contains two or more relevant images. In this paper, a method of using machine learning is proposed to detect co-saliency objects. Firstly, some simple images are selected to form a simple image set based on four scoring indicators. Secondly, positive and negative samples are extracted from the simple images set based on co-coherence characteristics, and high-dimensional semantic features are extracted by the deep learning model which receives RGBD four-channels input. Thirdly, the co-saliency classifier is trained by positive and negative samples, and co-saliency maps are generated by testing all the superpixels in the images by the co-saliency classifier. Finally, a smooth fusion operation is adopted to generate the final co-saliency map. Experimental results on the public benchmark dataset show that the proposed algorithm is superior to the state-of-the-art methods in terms of accuracy and efficiency, and it is robust.
  • loading
  • WANG Wenguan, SHEN Jianbing, LI Xuelong, et al. Robust video object cosegmentation[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3137–3148. doi: 10.1109/TIP.2015.2438550
    LEI Jianjun, WU Min, ZHANG Changqing, et al. Depth-preserving stereo image retargeting based on pixel fusion[J]. IEEE Transactions on Multimedia, 2017, 19(7): 1442–1453. doi: 10.1109/TMM.2017.2660440
    LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664–5677. doi: 10.1109/TIP.2016.2612882
    CAO Xiaochun, ZHANG Changqing, FU Huazhu, et al. Saliency-aware nonparametric foreground annotation based on weakly labeled data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6): 1253–1265. doi: 10.1109/TNNLS.2015.2488637
    PANG Yanwei, ZHU Hailong, LI Xuelong, et al. Motion blur detection with an indicator function for surveillance machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5592–5601. doi: 10.1109/TIE.2016.2564938
    LEI Jianjun, LIU Jianying, ZHANG Hailong, et al. Motion and structure information based adaptive weighted depth video estimation[J]. IEEE Transactions on Broadcasting, 2015, 61(3): 416–424. doi: 10.1109/TBC.2015.2437197
    YANG Jingyu, GAN Ziqiao, LI Kun, et al. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 927–940. doi: 10.1109/TCYB.2014.2340032
    SONG Hangke, LIU Zhi, XIE Yufeng, et al. RGBD co-saliency detection via bagging-based clustering[J]. IEEE Signal Processing Letters, 2016, 23(12): 1722–1726. doi: 10.1109/LSP.2016.2615293
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. Co-saliency detection for RGBD images based on multi-constraint feature matching and cross label propagation[J]. IEEE Transactions on Image Processing, 2018, 27(2): 568–579. doi: 10.1109/TIP.2017.2763819
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. An iterative co-saliency framework for RGBD images[J]. IEEE Transactions on Cybernetics, 2019, 49(1): 233–246. doi: 10.1109/tcyb.2017.2771488
    CHEN M, VELASCO-FORERO S, TSANG I, et al. Objects co-segmentation: Propagated from simpler images[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 1682–1686. doi: 10.1109/ICASSP.2015.7178257.
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    GUO Jingfan, REN Tongwei, and BEI Jia. Salient object detection for RGB-D image via saliency evolution[C]. 2016 IEEE International Conference on Multimedia and Expo, Seattle, USA, 2016: 1–6.
    CONG Runmin, LEI Jianjun, ZHANG Changqing, et al. Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion[J]. IEEE Signal Processing Letters, 2016, 23(6): 819–823. doi: 10.1109/lsp.2016.2557347
    MAI Long and LIU Feng. Comparing salient object detection results without ground truth[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 76–91. doi: 10.1007/978-3-319-10578-9_6.
    LI Lina, LIU Zhi, and ZHANG Jian. Unsupervised image co-segmentation via guidance of simple images[J]. Neurocomputing, 2018, 275: 1650–1661. doi: 10.1016/j.neucom.2017.10.002
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. HSCS: Hierarchical Sparsity based co-saliency detection for RGBD images[J]. IEEE Transactions on Multimedia, 2019, 21(7): 1660–1771. doi: 10.1109/TMM.2018.2884481
    ARTHUR D and VASSILVITSKII S. k-means++: The advantages of careful seeding[C]. The Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
    HUANG Posheng, SHEN C H, and HSIAO H F. RGBD salient object detection using spatially coherent deep learning framework[C]. The 23rd IEEE International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5.
    LIU Zhengyi, SHI Song, DUAN Quntao, et al. Salient object detection for RGB-D image by single stream recurrent convolution neural network[J]. Neurocomputing, 2019, 363: 46–57. doi: 10.1016/j.neucom.2019.07.012
    HAN Junwei, CHENG Gong, LI Zhenpeng, et al. A unified metric learning-based framework for co-saliency detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2473–2483. doi: 10.1109/tcsvt.2017.2706264
    QIN Yao, FENG Mengyang, LU Huchuan, et al. Hierarchical cellular automata for visual saliency[J]. International Journal of Computer Vision, 2018, 126(7): 751–770. doi: 10.1007/s11263-017-1062-2
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: A benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722. doi: 10.1109/TIP.2015.2487833
    WANG Wenguan, SHEN Jianbing, and SHAO Ling. Consistent video saliency using local gradient flow optimization and global refinement[J]. IEEE Transactions on Image Processing, 2015, 24(11): 4185–4196. doi: 10.1109/TIP.2015.2460013
    FAN Dengping, CHENG Mingming, LIU Yun, et al. Structure-measure: A new way to evaluate foreground maps[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4558–4567.
    LI Yijun, FU Keren, LIU Zhi, et al. Efficient saliency-model-guided visual co-saliency detection[J]. IEEE Signal Processing Letters, 2015, 22(5): 588–592. doi: 10.1109/LSP.2014.2364896
    FU Huazhu, CAO Xiaochun, and TU Zhuowen. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing, 2013, 22(10): 3766–3778. doi: 10.1109/TIP.2013.2260166
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1962) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return