Citation: | Xi LIAO, Chenhong ZHOU, Yang WANG, Shasha LIAO, Jihua ZHOU, Jie ZHANG. A Survey of Orbital Angular Momentum in Wireless Communication[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372 |
Electromagnetic vortices are introduced into wireless communication to improve spectral efficiency and anti-interference capability. In this paper, the basic principle and characteristics of Orbital Angular Momentum (OAM) and electromagnetic eddy are introduced firstly. The principle of generating Orbital Angular Momentum from supersurface is given, and the methods and research status of generating orbital angular momentum based on supersurface are summarized. The transmission performance, receiving and detecting method, multiplexing and demultiplexing performance of orbital angular momentum are summarized. Finally, the key problems to be solved in the future application of wireless communication orbital angular momentum are discussed.
POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(557): 560–567.
|
DARWIN C G. Notes on the theory of radiation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1932, 136(829): 36–52.
|
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
|
TAO S H, YUAN X C, LIN J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731. doi: 10.1364/OPEX.13.007726
|
SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Optics Letters, 1997, 22(1): 52–54. doi: 10.1364/OL.22.000052
|
DI TRAPANI P, CHINAGLIA W, MINARDI S, et al. Observation of quadratic optical vortex solitons[J]. Physical Review Letters, 2000, 84(17): 3843–3846. doi: 10.1103/PhysRevLett.84.3843
|
POPESCU G and DOGARIU A. Spectral anomalies at wave-front dislocations[J]. Physical Review Letters, 2002, 88(18): 183902. doi: 10.1103/PhysRevLett.88.183902
|
BERŽANSKIS A, MATIJOŠLUS A, PISKARSKAS A, et al. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Optics Communications, 1997, 140(4/6): 273–276.
|
GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
|
XIE Guodong, REN Yongxiong, YAN Yan, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447–3450. doi: 10.1364/OL.41.003447
|
NDAGANO B, NAPE I, COX M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. doi: 10.1109/JLT.2017.2766760
|
YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630
|
LIN Mingtuan, LIU Peiguo, GAO Yue, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13): 1168–1170. doi: 10.1049/el.2016.0237
|
SHI Chengzhi, DUBOIS M, WANG Yuan, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250–7253. doi: 10.1073/pnas.1704450114
|
THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
|
WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138
|
TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
|
PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265
|
刘康, 黎湘, 王宏强, 等. 涡旋电磁波及其在雷达中应用研究进展[J]. 电子学报, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
|
CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370
|
JING Haiyue, CHENG Wenchi, LI Zan, et al. Concentric UCAs based low-order OAM for high capacity in radio vortex wireless communications[J]. Journal of Communications and Information Networks, 2018, 3(4): 85–100. doi: 10.1007/s41650-018-0036-z
|
CHENG Wenchi, ZHANG Hailin, LIANG Liping, et al. Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmwave communications[J]. IEEE Access, 2018, 6: 2732–2745. doi: 10.1109/ACCESS.2017.2785125
|
LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539
|
孙学宏, 李强, 庞丹旭, 等. 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025
SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025
|
MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—a system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
|
TAMBURINI F, THIDÉ B, MARI E, et al. Reply to comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002
|
BOUCHAL Z and CELECHOVSKY R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131.
|
MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529
|
CHEN Menglin, JIANG Lijun, and SHA Wei. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362
|
MACCALLI S, PISANO G, COLAFRANCESCO S, et al. Q-plate for millimeter-wave orbital angular momentum manipulation[J]. Applied Optics, 2013, 52(4): 635–639. doi: 10.1364/AO.52.000635
|
KOU Na, YU Shixing, and LI Long. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1): 016701. doi: 10.7567/APEX.10.016701
|
CHEN Menglin, JIANG Lijun, and SHA Wei. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency[J]. Journal of Applied Physics, 2016, 119(6): 064506. doi: 10.1063/1.4941696
|
GUO Yinghui, PU Mingbo, ZHAO Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary Orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564
|
KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.
|
MA Xiaoliang, PU Mingbo, LI Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365
|
CHEN Menglin, JIANG Lijun, and SHA Wei. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
|
CHEN Menglin, JIANG Lijun, and SHA Wei. Generation of orbital angular momentum by a point defect in photonic crystals[J]. Physical Review Applied, 2018, 10(1): 014034. doi: 10.1103/PhysRevApplied.10.014034
|
XU Bijun, WU Chao, WEI Zeyong, et al. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase[J]. Optical Materials Express, 2016, 6(12): 3940–3945. doi: 10.1364/OME.6.003940
|
SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732
|
CHEN Menglin, JIANG Lijun, and SHA Wei. Quasi-continuous metasurfaces for orbital angular momentum generation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 477–481. doi: 10.1109/LAWP.2019.2894772
|
ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078
|
YAN Yan, LI Long, XIE Guodong, et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 1370–1375.
|
YAO Yu, LIANG Xianlin, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
|
ZHANG Runzhou, LI Long, ZHAO Zhe, et al. Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium[J]. Optics Letters, 2019, 44(3): 691–694. doi: 10.1364/OL.44.000691
|
NIEMIEC R, BROUSSEAU C, EMILE O, et al. Study of OAM waves reflection on different types of surfaces or objects at 2.45 GHz[C]. The 1st URSI Atlantic Radio Science Conference, Las Palmas, Spain, 2015: 1–2.
|
CHEN Menglin, JIANG Lijun, and SHA Wei. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439
|
MOHAMMADI S M, DALDORFF L K S, FOROZESH K, et al. Orbital angular momentum in radio: Measurement methods[J]. Radio Science, 2010, 45(4): RS4007.
|
HUI Xiaonan, ZHENG Shilie, ZHANG Weite, et al. Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition[J]. Optics Express, 2016, 24(5): 5423–5430. doi: 10.1364/OE.24.005423
|
ZHANG Chao and MA Lu. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna[J]. Scientific Reports, 2017, 7(1): 4585. doi: 10.1038/s41598-017-04313-4
|
LIU Changming, WEI Xuli, NIU Liting, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer[J]. Optics Express, 2016, 24(12): 12534–12541. doi: 10.1364/OE.24.012534
|
ZHENG Shilie, JIN Xiaofeng, ZHANG Xianmin, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047.
|
武华阳. 无线轨道角动量通信与雷达目标成像技术研究[D]. [硕士论文], 浙江大学, 2017.
WU Huayang. Research on wireless communication and radar target imaging technique based on OAM[D]. [Master dissertation], Zhejiang University, 2017.
|
LEE D, SASAKI H, FUKUMOTO H, et al. Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications[J]. IEICE Transactions on Communications, 2017, 100(7): 1044–1063.
|
黄铭, 毛福春, 曾佳, 等. 轨道角动量复用技术[J]. 中国无线电, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018
HUANG Ming, MAO Fuchun, ZENG Jia, et al. Orbital angular momentum multiplexing technology[J]. China Radio, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018
|
ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199
|
LI Yang, LI Xiong, CHEN Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502
|
ZHANG Di, CAO Xiangyu, GAO Jun, et al. A shared aperture 1 bit metasurface for orbital angular momentum multiplexing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 566–570. doi: 10.1109/LAWP.2019.2893492
|
OPARE K A, KUANG Yujun, and KPONYO J J. Mode combination in an ideal wireless OAM-MIMO multiplexing system[J]. IEEE Wireless Communications Letters, 2015, 4(4): 449–452. doi: 10.1109/LWC.2015.2434375
|
LEE D, SASAKI H, FUKUMOTO H, et al. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing[C]. The 87th IEEE Vehicular Technology Conference, Porto, Portugal, 2018: 1–5.
|
YAN Yan, LI Long, XIE Guodong, et al. OFDM over mm-wave OAM channels in a multipath environment with intersymbol interference[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6.
|
CHEN Rui, YANG Wenhai, XU Hui, et al. A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5481–5485. doi: 10.1109/TVT.2018.2817230
|
HU Tao, WANG Yang, LIAO Xi, et al. OFDM-OAM modulation for future wireless communications[J]. IEEE Access, 2019, 7: 59114–59125. doi: 10.1109/ACCESS.2019.2915035
|
GOU Pengqi, KONG Miao, YANG Guomin, et al. Integration of OAM and WDM in optical wireless system by radial uniform circular array[J]. Optics Communications, 2018, 424: 159–162. doi: 10.1016/j.optcom.2018.04.059
|
YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
|
观察者. 中国完成世界首次微波频段轨道角动量电磁波27.5公里长距离传输实验[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.
Guancha Syndicate. China has completed the world's first long-distance transmission experiment of 27.5 km of microwave frequency orbital angular momentum electromagnetic wave[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.
|
TAMAGNONE M, CRAEYE C, and PERRUISSEAU-CARRIER J. Comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118001. doi: 10.1088/1367-2630/14/11/118001
|