Advanced Search
Volume 42 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
Xi LIAO, Chenhong ZHOU, Yang WANG, Shasha LIAO, Jihua ZHOU, Jie ZHANG. A Survey of Orbital Angular Momentum in Wireless Communication[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372
Citation: Xi LIAO, Chenhong ZHOU, Yang WANG, Shasha LIAO, Jihua ZHOU, Jie ZHANG. A Survey of Orbital Angular Momentum in Wireless Communication[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372

A Survey of Orbital Angular Momentum in Wireless Communication

doi: 10.11999/JEIT190372
Funds:  The National Natural Science Foundation of China (61801062, 61601073, 61801063), The Chongqing Research Program of Basic Research and Frontier Technology (CSTC2017JCYJA0817), The Dr. Start-up Funding of Chongqing University of Posts and Telecommunications (A2016-110)
  • Received Date: 2019-05-20
  • Rev Recd Date: 2019-09-18
  • Available Online: 2020-03-02
  • Publish Date: 2020-07-23
  • Electromagnetic vortices are introduced into wireless communication to improve spectral efficiency and anti-interference capability. In this paper, the basic principle and characteristics of Orbital Angular Momentum (OAM) and electromagnetic eddy are introduced firstly. The principle of generating Orbital Angular Momentum from supersurface is given, and the methods and research status of generating orbital angular momentum based on supersurface are summarized. The transmission performance, receiving and detecting method, multiplexing and demultiplexing performance of orbital angular momentum are summarized. Finally, the key problems to be solved in the future application of wireless communication orbital angular momentum are discussed.

  • loading
  • POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(557): 560–567.
    DARWIN C G. Notes on the theory of radiation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1932, 136(829): 36–52.
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    TAO S H, YUAN X C, LIN J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731. doi: 10.1364/OPEX.13.007726
    SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Optics Letters, 1997, 22(1): 52–54. doi: 10.1364/OL.22.000052
    DI TRAPANI P, CHINAGLIA W, MINARDI S, et al. Observation of quadratic optical vortex solitons[J]. Physical Review Letters, 2000, 84(17): 3843–3846. doi: 10.1103/PhysRevLett.84.3843
    POPESCU G and DOGARIU A. Spectral anomalies at wave-front dislocations[J]. Physical Review Letters, 2002, 88(18): 183902. doi: 10.1103/PhysRevLett.88.183902
    BERŽANSKIS A, MATIJOŠLUS A, PISKARSKAS A, et al. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Optics Communications, 1997, 140(4/6): 273–276.
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
    XIE Guodong, REN Yongxiong, YAN Yan, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447–3450. doi: 10.1364/OL.41.003447
    NDAGANO B, NAPE I, COX M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. doi: 10.1109/JLT.2017.2766760
    YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630
    LIN Mingtuan, LIU Peiguo, GAO Yue, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13): 1168–1170. doi: 10.1049/el.2016.0237
    SHI Chengzhi, DUBOIS M, WANG Yuan, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250–7253. doi: 10.1073/pnas.1704450114
    THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138
    TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
    PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265
    刘康, 黎湘, 王宏强, 等. 涡旋电磁波及其在雷达中应用研究进展[J]. 电子学报, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034

    LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
    CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370
    JING Haiyue, CHENG Wenchi, LI Zan, et al. Concentric UCAs based low-order OAM for high capacity in radio vortex wireless communications[J]. Journal of Communications and Information Networks, 2018, 3(4): 85–100. doi: 10.1007/s41650-018-0036-z
    CHENG Wenchi, ZHANG Hailin, LIANG Liping, et al. Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmwave communications[J]. IEEE Access, 2018, 6: 2732–2745. doi: 10.1109/ACCESS.2017.2785125
    LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539
    孙学宏, 李强, 庞丹旭, 等. 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025

    SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025
    MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—a system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    TAMBURINI F, THIDÉ B, MARI E, et al. Reply to comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002
    BOUCHAL Z and CELECHOVSKY R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131.
    MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529
    CHEN Menglin, JIANG Lijun, and SHA Wei. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362
    MACCALLI S, PISANO G, COLAFRANCESCO S, et al. Q-plate for millimeter-wave orbital angular momentum manipulation[J]. Applied Optics, 2013, 52(4): 635–639. doi: 10.1364/AO.52.000635
    KOU Na, YU Shixing, and LI Long. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1): 016701. doi: 10.7567/APEX.10.016701
    CHEN Menglin, JIANG Lijun, and SHA Wei. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency[J]. Journal of Applied Physics, 2016, 119(6): 064506. doi: 10.1063/1.4941696
    GUO Yinghui, PU Mingbo, ZHAO Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary Orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564
    KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.
    MA Xiaoliang, PU Mingbo, LI Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365
    CHEN Menglin, JIANG Lijun, and SHA Wei. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
    CHEN Menglin, JIANG Lijun, and SHA Wei. Generation of orbital angular momentum by a point defect in photonic crystals[J]. Physical Review Applied, 2018, 10(1): 014034. doi: 10.1103/PhysRevApplied.10.014034
    XU Bijun, WU Chao, WEI Zeyong, et al. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase[J]. Optical Materials Express, 2016, 6(12): 3940–3945. doi: 10.1364/OME.6.003940
    SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732
    CHEN Menglin, JIANG Lijun, and SHA Wei. Quasi-continuous metasurfaces for orbital angular momentum generation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 477–481. doi: 10.1109/LAWP.2019.2894772
    ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078
    YAN Yan, LI Long, XIE Guodong, et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 1370–1375.
    YAO Yu, LIANG Xianlin, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
    ZHANG Runzhou, LI Long, ZHAO Zhe, et al. Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium[J]. Optics Letters, 2019, 44(3): 691–694. doi: 10.1364/OL.44.000691
    NIEMIEC R, BROUSSEAU C, EMILE O, et al. Study of OAM waves reflection on different types of surfaces or objects at 2.45 GHz[C]. The 1st URSI Atlantic Radio Science Conference, Las Palmas, Spain, 2015: 1–2.
    CHEN Menglin, JIANG Lijun, and SHA Wei. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439
    MOHAMMADI S M, DALDORFF L K S, FOROZESH K, et al. Orbital angular momentum in radio: Measurement methods[J]. Radio Science, 2010, 45(4): RS4007.
    HUI Xiaonan, ZHENG Shilie, ZHANG Weite, et al. Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition[J]. Optics Express, 2016, 24(5): 5423–5430. doi: 10.1364/OE.24.005423
    ZHANG Chao and MA Lu. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna[J]. Scientific Reports, 2017, 7(1): 4585. doi: 10.1038/s41598-017-04313-4
    LIU Changming, WEI Xuli, NIU Liting, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer[J]. Optics Express, 2016, 24(12): 12534–12541. doi: 10.1364/OE.24.012534
    ZHENG Shilie, JIN Xiaofeng, ZHANG Xianmin, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047.
    武华阳. 无线轨道角动量通信与雷达目标成像技术研究[D]. [硕士论文], 浙江大学, 2017.

    WU Huayang. Research on wireless communication and radar target imaging technique based on OAM[D]. [Master dissertation], Zhejiang University, 2017.
    LEE D, SASAKI H, FUKUMOTO H, et al. Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications[J]. IEICE Transactions on Communications, 2017, 100(7): 1044–1063.
    黄铭, 毛福春, 曾佳, 等. 轨道角动量复用技术[J]. 中国无线电, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018

    HUANG Ming, MAO Fuchun, ZENG Jia, et al. Orbital angular momentum multiplexing technology[J]. China Radio, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018
    ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199
    LI Yang, LI Xiong, CHEN Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502
    ZHANG Di, CAO Xiangyu, GAO Jun, et al. A shared aperture 1 bit metasurface for orbital angular momentum multiplexing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 566–570. doi: 10.1109/LAWP.2019.2893492
    OPARE K A, KUANG Yujun, and KPONYO J J. Mode combination in an ideal wireless OAM-MIMO multiplexing system[J]. IEEE Wireless Communications Letters, 2015, 4(4): 449–452. doi: 10.1109/LWC.2015.2434375
    LEE D, SASAKI H, FUKUMOTO H, et al. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing[C]. The 87th IEEE Vehicular Technology Conference, Porto, Portugal, 2018: 1–5.
    YAN Yan, LI Long, XIE Guodong, et al. OFDM over mm-wave OAM channels in a multipath environment with intersymbol interference[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6.
    CHEN Rui, YANG Wenhai, XU Hui, et al. A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5481–5485. doi: 10.1109/TVT.2018.2817230
    HU Tao, WANG Yang, LIAO Xi, et al. OFDM-OAM modulation for future wireless communications[J]. IEEE Access, 2019, 7: 59114–59125. doi: 10.1109/ACCESS.2019.2915035
    GOU Pengqi, KONG Miao, YANG Guomin, et al. Integration of OAM and WDM in optical wireless system by radial uniform circular array[J]. Optics Communications, 2018, 424: 159–162. doi: 10.1016/j.optcom.2018.04.059
    YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    观察者. 中国完成世界首次微波频段轨道角动量电磁波27.5公里长距离传输实验[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.

    Guancha Syndicate. China has completed the world's first long-distance transmission experiment of 27.5 km of microwave frequency orbital angular momentum electromagnetic wave[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.
    TAMAGNONE M, CRAEYE C, and PERRUISSEAU-CARRIER J. Comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118001. doi: 10.1088/1367-2630/14/11/118001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (4658) PDF downloads(299) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return