Citation: | Guosheng ZHAO, Hui ZHANG, Jian WANG. A Mobile Crowdsensing Data Security Delivery Model Based on Tangle Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 965-971. doi: 10.11999/JEIT190370 |
Considering the security risks and privacy leaks in the process of data and reward in the Mobile CrowdSensing (MCS), a distributed security delivery model based on Tangle network is proposed. Firstly, in the data perception stage, the local outlier factor detection algorithm is used to eliminate the anomaly data, cluster the perception data and determine the trusted participant. Then, in the transaction writing stage, Markov Monte Carlo algorithm is used to select the transaction and verify its legitimacy. The anonymous identity data is uploaded by registering with the authentication center, and the transaction is synchronously written to the distributed account book. Finally, combined with Tangle network cumulative weight consensus mechanism, when the security of transaction reaches its threshold, task publishers can safely deliver data and rewards. The simulation results show that the model not only protects user privacy, but also enhances the ability of secure delivery of data and reward. Compared with the existing sensing platform, the model reduces the time complexity and task publishing cost.
熊金波, 马蓉, 牛犇, 等. 移动群智感知中基于用户联盟匹配的隐私保护激励机制[J]. 计算机研究与发展, 2018, 55(7): 1359–1370. doi: 10.7544/issn1000-1239.2018.20180080
XIONG Jinbo, MA Rong, NIU Ben, et al. Privacy protection incentive mechanism based on user-union matching in mobile crowdsensing[J]. Journal of Computer Research and Development, 2018, 55(7): 1359–1370. doi: 10.7544/issn1000-1239.2018.20180080
|
崔勇, 宋健, 缪葱葱, 等. 移动云计算研究进展与趋势[J]. 计算机学报, 2017, 40(2): 273–295. doi: 10.11897/SP.J.1016.2017.00273
CUI Yong, SONG Jian, Miao Congcong, et al. Mobile cloud computing research progress and trends[J]. Chinese Journal of Computers, 2017, 40(2): 273–295. doi: 10.11897/SP.J.1016.2017.00273
|
何云华, 李梦茹, 李红, 等. 群智感知应用中基于区块链的激励机制[J]. 计算机研究与发展, 2019, 56(3): 544–554. doi: 10.7544/issn1000-1239.2019.20170670
HE Yunhua, LI Mengru, LI Hong, et al. A blockchain based incentive mechanism for crowdsensing applications[J]. Journal of Computer Research and Development, 2019, 56(3): 544–554. doi: 10.7544/issn1000-1239.2019.20170670
|
HUANG Kuanlun, KANHERE S S, and HU Wen. Preserving privacy in participatory sensing systems[J]. Computer Communications, 2010, 33(11): 1266–1280. doi: 10.1016/j.comcom.2009.08.012
|
DONG Kai, GU Tao, TAO Xianping, et al. Privacy protection in participatory sensing applications requiring fine-grained locations[C]. The 16th IEEE International Conference on Parallel and Distributed Systems, Shanghai, China, 2010. doi: 10.1109/ICPADS.2010.127.
|
CHRISTIN D, GUILLEMET J, REINHARDT A, et al. Privacy-preserving collaborative path hiding for participatory sensing applications[C]. The 8th IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Valencia, Spain, 2011: 341–350. doi: 10.1109/MASS.2011.41.
|
徐哲, 李卓, 陈昕. 面向移动群智感知的多任务分发算法[J]. 计算机应用, 2017, 37(1): 18–23, 47. doi: 10.11772/j.issn.1001-9081.2017.01.0018
XU Zhe, LI Zhuo, and CHEN Xin. Multi-task assignment algorithm for mobile crowdsensing[J]. Journal of Computer Applications, 2017, 37(1): 18–23, 47. doi: 10.11772/j.issn.1001-9081.2017.01.0018
|
CHRISTIN D, ROßKOPF C, HOLLICK M, et al. IncogniSense: An anonymity-preserving reputation framework for participatory sensing applications[J]. Pervasive and Mobile Computing, 2013, 9(3): 353–371. doi: 10.1016/j.pmcj.2013.01.003
|
RESTUCCIA F and DAS S K. FIDES: A trust-based framework for secure user incentivization in participatory sensing[C]. IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks 2014, Sydney, Australia, 2014: 1–10.
|
CHANG S H, CHEN Y S, and CHENG S M. Detection of Sybil attacks in participatory sensing using cloud based trust management system[C]. 2013 International Symposium on Wireless and Pervasive Computing, Taipei, China, 2013: 1–6. doi: 10.1109/ISWPC.2013.6707448.
|
LI Ming, WENG Jian, YANG Anjia, et al. CrowdBC: A blockchain-based decentralized framework for crowdsourcing[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(6): 1251–1266. doi: 10.1109/TPDS.2018.2881735
|
LU Yuan, TANG Qiang, and WANG Guiling. ZebraLancer: Crowdsource knowledge atop open blockchain, privately and anonymously[J]. arXiv: 1803.01256v4, 2018.
|
严云洋, 瞿学新, 朱全银, 等. 基于离群点检测的分类结果置信度的度量方法[J]. 南京大学学报: 自然科学, 2019, 55(1): 102–109. doi: 10.13232/j.cnki.jnju.2019.01.010
YAN Yunyang, QU Xuexin, ZHU Quanyin, et al. Confidence measure method of classification results based on outlier detection[J]. Journal of Nanjing University:Natural Science, 2019, 55(1): 102–109. doi: 10.13232/j.cnki.jnju.2019.01.010
|
张俊松, 甘勇, 贺蕾. 群智感知环境下支持激励机制实施的匿名身份认证协议研究[J]. 小型微型计算机系统, 2018, 39(7): 1522–1526. doi: 10.3969/j.issn.1000-1220.2018.07.027
ZHANG Junsong, GAN Yong, and HE Lei. Anonymous authentication protocol for supporting incentive mechanism in crowd sensing[J]. Journal of Chinese Computer Systems, 2018, 39(7): 1522–1526. doi: 10.3969/j.issn.1000-1220.2018.07.027
|
JUNG T, LI Xiangyang, and WAN Meng. Collusion-tolerable privacy-preserving sum and product calculation without secure channel[J]. IEEE Transactions on Dependable and Secure Computing, 2015, 12(1): 45–57. doi: 10.1109/TDSC.2014.2309134
|