Citation: | Gang WANG, Yun FENG, Shiwei LU, Runnian MA. Virus Propagation Model and Security Performance Optimization Strategy of Multi-operating System Heterogeneous Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 972-980. doi: 10.11999/JEIT190360 |
In view of the fact that worm viruses can only infect specific operating systems, the virus propagation rule and security performance optimization strategy in multi-operating system heterogeneous network are studied in this paper. First, considering that most viruses can only spread in link between the same operation system, the parameters of heterogeneous edges ratio are introduced into the Susceptible Infected Remove Susceptible (SIRS) virus transmission model, and the influence of heterogeneous edges and network security performance on the single system virus transmission is studied through system equilibrium solution and basic regeneration number analysis. Secondly, according to the moving target defense thought and technology, the network security optimization strategies is designed for non-isomeric random interrupt, non-isomeric random reconnecting and single operating system random node migration, and the variation of the same ratio and the basic number of regenerated numbers in the three strategies and the impact on the safety of the network are anaylrzed. Finally, the correctness of the virus propagation model is verified by simulation, and the network security performance optimization effects of the three strategies are analyzed.
PEI Yongzhen, LIU Shaoying, LI Changguo, et al. The dynamics of an impulsive delay SI model with variable coefficients[J]. Applied Mathematical Modelling, 2009, 33(6): 2766–2776. doi: 10.1016/j.apm.2008.08.011
|
VAN MIEGHEM P. Epidemic phase transition of the SIS type in networks[J]. Europhysics Letters, 2012, 97(4): 48004. doi: 10.1209/0295-5075/97/48004
|
MARTINEZ J S V, LOPEZ G P, GONZALEZ A J, et al. Numerical approaching of SIR epidemic model for propagation of computer worms[J]. IEEE Latin America Transactions, 2015, 13(10): 3452–3460. doi: 10.1109/TLA.2015.7387254
|
王刚, 胡鑫, 陆世伟. 节点增减机制下的病毒传播模型及稳定性[J]. 电子科技大学学报, 2019, 48(1): 74–79. doi: 10.3969/j.issn.1001-0548.2019.01.013
WANG Gang, HU Xin, and LU Shiwei. Virus spreading model and its stability based on the mechanism of node increasing and decreasing[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(1): 74–79. doi: 10.3969/j.issn.1001-0548.2019.01.013
|
顾海俊, 蒋国平, 夏玲玲. 基于状态概率转移的SIRS病毒传播模型及其临界值分析[J]. 计算机科学, 2016, 43(6A): 64–67. doi: 10.11896/j.issn.1002-137X.2016.6A.014
GU Haijun, JIANG Guoping, and XIA Lingling. SIRS epidemic model and its threshold based on state transition probability[J]. Computer Science, 2016, 43(6A): 64–67. doi: 10.11896/j.issn.1002-137X.2016.6A.014
|
王刚, 陆世伟, 胡鑫, 等. “去二存一”混合机制下的病毒扩散模型及稳定性分析[J]. 电子与信息学报, 2019, 41(3): 709–716. doi: 10.11999/JEIT180381
WANG Gang, LU Shiwei, HU Xin, et al. Virus propagation model and stability under the hybrid mechanism of “Two-go and One-live”[J]. Journal of Electronics &Information Technology, 2019, 41(3): 709–716. doi: 10.11999/JEIT180381
|
王刚, 陆世伟, 胡鑫, 等. 潜伏机制下网络病毒传播SEIQRS模型及稳定性分析[J]. 哈尔滨工业大学学报, 2019, 51(5): 131–137. doi: 10.11918/j.issn.0367-6234.201805136
WANG Gang, LU Shiwei, HU Xin, et al. Network virus spreading SEIQRS model and its stability under escape mechanism[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 131–137. doi: 10.11918/j.issn.0367-6234.201805136
|
EL-SAYED A M A, ARAFA A A M, KHALI M, et al. A mathematical model with memory for propagation of computer virus under human intervention[J]. Progress in Fractional Differentiation and Applications, 2016, 2(2): 105–113. doi: 10.18576/pfda/020203
|
WANG Lei, YAO Changhua, YANG Yuqi, et al. Research on a dynamic virus propagation model to improve smart campus security[J]. IEEE Access, 2018, 6: 20663–20672. doi: 10.1109/ACCESS.2018.2817508
|
HEYDARI V, KIM S I, and YOO S M. Scalable anti-censorship framework using moving target defense for web servers[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1113–1124. doi: 10.1109/TIFS.2016.2647218
|
LEI Cheng, MA Duohe, and ZHANG Hongqi. Optimal strategy selection for moving target defense based on Markov game[J]. IEEE Access, 2017, 5: 156–169. doi: 10.1109/ACCESS.2016.2633983
|
熊鑫立, 赵光胜, 徐伟光, 等. 基于系统攻击面的动态目标防御有效性评估方法[J]. 清华大学学报: 自然科学版, 2019, 59(4): 276–283. doi: 10.16511/j.cnki.qhdxxb.2018.26.056
XIONG Xinli, ZHAO Guangsheng, XU Weiguang, et al. System attack surface based MTD effectiveness assessment model[J]. Journal of Tsinghua University:Science and Technology, 2019, 59(4): 276–283. doi: 10.16511/j.cnki.qhdxxb.2018.26.056
|
周余阳, 程光, 郭春生, 等. 移动目标防御的攻击面动态转移技术研究综述[J]. 软件学报, 2018, 29(9): 2799–2820. doi: 10.13328/j.cnki.jos.005597
ZHOU Yuyang, CHENG Guang, GUO Chunsheng, et al. Survey on attack surface dynamic transfer technology based on moving target defense[J]. Journal of Software, 2018, 29(9): 2799–2820. doi: 10.13328/j.cnki.jos.005597
|
刘江, 张红旗, 杨英杰, 等. 基于主机安全状态迁移模型的动态网络防御有效性评估[J]. 电子与信息学报, 2017, 39(3): 509–517. doi: 10.11999/JEIT160513
LIU Jiang, ZHANG Hongqi, YANG Yingjie, et al. Effectiveness evaluation of moving network defense based on host security state transition model[J]. Journal of Electronics &Information Technology, 2017, 39(3): 509–517. doi: 10.11999/JEIT160513
|
HONG J B and KIM D S. Assessing the effectiveness of moving target defenses using security models[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(2): 163–177. doi: 10.1109/TDSC.2015.2443790
|
JIANG Jiaojiao, WEN Sheng, YU Shui, et al. K-center: An approach on the multi-source identification of information diffusion[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(12): 2616–2626. doi: 10.1109/TIFS.2015.2469256
|
CAI Jun, WANG Yu, LIU Yan, et al. Enhancing network capacity by weakening community structure in scale-free network[J]. Future Generation Computer Systems, 2018, 87: 765–771. doi: 10.1016/j.future.2017.08.014
|
LESKOVEC J, KLEINBERG J, and KREVL A. SNAP Datasets: Stanford Large Network Dataset Collection[EB/OL]. http://snap.stanford.edu/data/p2p-Gnutella04.html, 2004.
|