Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Gang WANG, Yun FENG, Shiwei LU, Runnian MA. Virus Propagation Model and Security Performance Optimization Strategy of Multi-operating System Heterogeneous Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 972-980. doi: 10.11999/JEIT190360
Citation: Gang WANG, Yun FENG, Shiwei LU, Runnian MA. Virus Propagation Model and Security Performance Optimization Strategy of Multi-operating System Heterogeneous Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 972-980. doi: 10.11999/JEIT190360

Virus Propagation Model and Security Performance Optimization Strategy of Multi-operating System Heterogeneous Network

doi: 10.11999/JEIT190360
Funds:  The National Nature Science Foundation of China (61573017)
  • Received Date: 2019-05-22
  • Rev Recd Date: 2019-12-09
  • Available Online: 2019-12-20
  • Publish Date: 2020-06-04
  • In view of the fact that worm viruses can only infect specific operating systems, the virus propagation rule and security performance optimization strategy in multi-operating system heterogeneous network are studied in this paper. First, considering that most viruses can only spread in link between the same operation system, the parameters of heterogeneous edges ratio are introduced into the Susceptible Infected Remove Susceptible (SIRS) virus transmission model, and the influence of heterogeneous edges and network security performance on the single system virus transmission is studied through system equilibrium solution and basic regeneration number analysis. Secondly, according to the moving target defense thought and technology, the network security optimization strategies is designed for non-isomeric random interrupt, non-isomeric random reconnecting and single operating system random node migration, and the variation of the same ratio and the basic number of regenerated numbers in the three strategies and the impact on the safety of the network are anaylrzed. Finally, the correctness of the virus propagation model is verified by simulation, and the network security performance optimization effects of the three strategies are analyzed.

  • loading
  • PEI Yongzhen, LIU Shaoying, LI Changguo, et al. The dynamics of an impulsive delay SI model with variable coefficients[J]. Applied Mathematical Modelling, 2009, 33(6): 2766–2776. doi: 10.1016/j.apm.2008.08.011
    VAN MIEGHEM P. Epidemic phase transition of the SIS type in networks[J]. Europhysics Letters, 2012, 97(4): 48004. doi: 10.1209/0295-5075/97/48004
    MARTINEZ J S V, LOPEZ G P, GONZALEZ A J, et al. Numerical approaching of SIR epidemic model for propagation of computer worms[J]. IEEE Latin America Transactions, 2015, 13(10): 3452–3460. doi: 10.1109/TLA.2015.7387254
    王刚, 胡鑫, 陆世伟. 节点增减机制下的病毒传播模型及稳定性[J]. 电子科技大学学报, 2019, 48(1): 74–79. doi: 10.3969/j.issn.1001-0548.2019.01.013

    WANG Gang, HU Xin, and LU Shiwei. Virus spreading model and its stability based on the mechanism of node increasing and decreasing[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(1): 74–79. doi: 10.3969/j.issn.1001-0548.2019.01.013
    顾海俊, 蒋国平, 夏玲玲. 基于状态概率转移的SIRS病毒传播模型及其临界值分析[J]. 计算机科学, 2016, 43(6A): 64–67. doi: 10.11896/j.issn.1002-137X.2016.6A.014

    GU Haijun, JIANG Guoping, and XIA Lingling. SIRS epidemic model and its threshold based on state transition probability[J]. Computer Science, 2016, 43(6A): 64–67. doi: 10.11896/j.issn.1002-137X.2016.6A.014
    王刚, 陆世伟, 胡鑫, 等. “去二存一”混合机制下的病毒扩散模型及稳定性分析[J]. 电子与信息学报, 2019, 41(3): 709–716. doi: 10.11999/JEIT180381

    WANG Gang, LU Shiwei, HU Xin, et al. Virus propagation model and stability under the hybrid mechanism of “Two-go and One-live”[J]. Journal of Electronics &Information Technology, 2019, 41(3): 709–716. doi: 10.11999/JEIT180381
    王刚, 陆世伟, 胡鑫, 等. 潜伏机制下网络病毒传播SEIQRS模型及稳定性分析[J]. 哈尔滨工业大学学报, 2019, 51(5): 131–137. doi: 10.11918/j.issn.0367-6234.201805136

    WANG Gang, LU Shiwei, HU Xin, et al. Network virus spreading SEIQRS model and its stability under escape mechanism[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 131–137. doi: 10.11918/j.issn.0367-6234.201805136
    EL-SAYED A M A, ARAFA A A M, KHALI M, et al. A mathematical model with memory for propagation of computer virus under human intervention[J]. Progress in Fractional Differentiation and Applications, 2016, 2(2): 105–113. doi: 10.18576/pfda/020203
    WANG Lei, YAO Changhua, YANG Yuqi, et al. Research on a dynamic virus propagation model to improve smart campus security[J]. IEEE Access, 2018, 6: 20663–20672. doi: 10.1109/ACCESS.2018.2817508
    HEYDARI V, KIM S I, and YOO S M. Scalable anti-censorship framework using moving target defense for web servers[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1113–1124. doi: 10.1109/TIFS.2016.2647218
    LEI Cheng, MA Duohe, and ZHANG Hongqi. Optimal strategy selection for moving target defense based on Markov game[J]. IEEE Access, 2017, 5: 156–169. doi: 10.1109/ACCESS.2016.2633983
    熊鑫立, 赵光胜, 徐伟光, 等. 基于系统攻击面的动态目标防御有效性评估方法[J]. 清华大学学报: 自然科学版, 2019, 59(4): 276–283. doi: 10.16511/j.cnki.qhdxxb.2018.26.056

    XIONG Xinli, ZHAO Guangsheng, XU Weiguang, et al. System attack surface based MTD effectiveness assessment model[J]. Journal of Tsinghua University:Science and Technology, 2019, 59(4): 276–283. doi: 10.16511/j.cnki.qhdxxb.2018.26.056
    周余阳, 程光, 郭春生, 等. 移动目标防御的攻击面动态转移技术研究综述[J]. 软件学报, 2018, 29(9): 2799–2820. doi: 10.13328/j.cnki.jos.005597

    ZHOU Yuyang, CHENG Guang, GUO Chunsheng, et al. Survey on attack surface dynamic transfer technology based on moving target defense[J]. Journal of Software, 2018, 29(9): 2799–2820. doi: 10.13328/j.cnki.jos.005597
    刘江, 张红旗, 杨英杰, 等. 基于主机安全状态迁移模型的动态网络防御有效性评估[J]. 电子与信息学报, 2017, 39(3): 509–517. doi: 10.11999/JEIT160513

    LIU Jiang, ZHANG Hongqi, YANG Yingjie, et al. Effectiveness evaluation of moving network defense based on host security state transition model[J]. Journal of Electronics &Information Technology, 2017, 39(3): 509–517. doi: 10.11999/JEIT160513
    HONG J B and KIM D S. Assessing the effectiveness of moving target defenses using security models[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(2): 163–177. doi: 10.1109/TDSC.2015.2443790
    JIANG Jiaojiao, WEN Sheng, YU Shui, et al. K-center: An approach on the multi-source identification of information diffusion[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(12): 2616–2626. doi: 10.1109/TIFS.2015.2469256
    CAI Jun, WANG Yu, LIU Yan, et al. Enhancing network capacity by weakening community structure in scale-free network[J]. Future Generation Computer Systems, 2018, 87: 765–771. doi: 10.1016/j.future.2017.08.014
    LESKOVEC J, KLEINBERG J, and KREVL A. SNAP Datasets: Stanford Large Network Dataset Collection[EB/OL]. http://snap.stanford.edu/data/p2p-Gnutella04.html, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (2072) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return