Citation: | Xuanjing SHEN, Zhe SHEN, Yongping HUANG, Yu WANG. Deep Convolutional Neural Network for Parking Space Occupancy Detection Based on Non-local Operation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2269-2276. doi: 10.11999/JEIT190349 |
CAICEDO F, BLAZQUEZ C, and MIRANDA P. Prediction of parking space availability in real time[J]. Expert Systems with Applications, 2012, 39(8): 7281–7290. doi: 10.1016/j.eswa.2012.01.091
|
DEL POSTIGO C G, TORRES J, and MENÉNDEZ J M. Vacant parking area estimation through background subtraction and transience map analysis[J]. IET Intelligent Transport Systems, 2015, 9(9): 835–841. doi: 10.1049/iet-its.2014.0090
|
DAN N. Parking management system and method[P]. US, 20030144890, 2003.
|
TSAI L W, HSIEH J W, and FAN K C. Vehicle detection using normalized color and edge map[J]. IEEE Transactions on Image Processing, 2007, 16(3): 850–864. doi: 10.1109/tip.2007.891147
|
HUANG C C, TAI Yushu, and WANG S J. Vacant parking space detection based on plane-based Bayesian hierarchical framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1598–1610. doi: 10.1109/tcsvt.2013.2254961
|
DELIBALTOV D, WU Wencheng, LOCE R P, et al. Parking lot occupancy determination from lamp-post camera images[C]. The 16th International IEEE Conference on Intelligent Transportation Systems, The Hague, Netherlands, 2013: 2387–2392. doi: 10.1109/itsc.2013.6728584.
|
LECUN Y, BENGIO Y, and HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
DE ALMEID P R L, OLIVEIRA L S, BRITTO JR A S, et al. PKLot–a robust dataset for parking lot classification[J]. Expert Systems with Applications, 2015, 42(11): 4937–4949. doi: 10.1016/j.eswa.2015.02.009
|
AMATO G, CARRARA F, FALCHI F, et al. Car parking occupancy detection using smart camera networks and deep learning[C]. 2016 IEEE Symposium on Computers and Communication, Messina, Italy, 2016: 1212–1217. doi: 10.1109/iscc.2016.7543901.
|
BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/cvpr.2005.38.
|
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5998–6008.
|
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803. doi: 10.1109/cvpr.2018.00813.
|
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/cvpr.2016.90.
|
AMATO G, CARRARA F, FALCHI F, et al. Deep learning for decentralized parking lot occupancy detection[J]. Expert Systems with Applications, 2017, 72: 327–334. doi: 10.1016/j.eswa.2016.10.055
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Red Hook, USA, 2012: 1097–1105.
|
NURULLAYEV S and LEE S W. Generalized parking occupancy analysis based on dilated convolutional neural network[J]. Sensors, 2019, 19(2): 277. doi: 10.3390/s19020277
|
OJANSIVU V and HEIKKILÄ J. Blur insensitive texture classification using local phase quantization[C]. The 3rd International Conference on Image and Signal Processing, Cherbourg-Octeville, France, 2008: 236–243. doi: 10.1007/978-3-540-69905-7_27.
|
RAHTU E, HEIKKILA J, OJANSIVU V, et al. Local phase quantization for blur-insensitive image analysis[J]. Image and Vision Computing, 2012, 30(8): 501–512. doi: 10.1016/j.imavis.2012.04.001
|
OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971–987. doi: 10.1109/tpami.2002.1017623
|