Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Yiwei PAN, Sihan YANG, Hua PENG, Tianyun LI, Wenya WANG. Specific Emitter Identification Using Signal Trajectory Image[J]. Journal of Electronics & Information Technology, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329
Citation: Yiwei PAN, Sihan YANG, Hua PENG, Tianyun LI, Wenya WANG. Specific Emitter Identification Using Signal Trajectory Image[J]. Journal of Electronics & Information Technology, 2020, 42(4): 941-949. doi: 10.11999/JEIT190329

Specific Emitter Identification Using Signal Trajectory Image

doi: 10.11999/JEIT190329
Funds:  The National Natural Science Foundation of China (61401511, U1736107)
  • Received Date: 2019-05-07
  • Rev Recd Date: 2019-07-23
  • Available Online: 2019-09-29
  • Publish Date: 2020-06-04
  • The radio frequency fingerprinting of the emitter is complex, and the performance of Specific Emitter Identification (SEI) is subjected to the present expertise. To remedy this shortcoming, this paper presents a novel SEI algorithm based on signal trajectory image, which realizes joint extraction of multiple complex fingerprints using deep learning architecture. First, this paper analyses the visual characteristics of multiple emitter imperfections in the signal trajectory image. Thereafter, signal trajectory grayscale image is used as the signal representation. Finally, a deep residual network is constructed to learn the visual characteristics reflected in the images. The proposed method overcomes the limitations of existing knowledge, and combines high information integrity with low computational complexity. Simulation results demonstrate that, compared with the existing algorithms, the proposed one can remarkably improve the SEI performance with a gain of about 30%.

  • loading
  • DANEV B, ZANETTI D, and CAPKUN S. On physical-layer identification of wireless devices[J]. ACM Computing Surveys, 2012, 45(1): 1–29. doi: 10.1145/2379776.2379782
    SPEZIO A E. Electronic warfare systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 633–644. doi: 10.1109/22.989948
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446
    HAN Jie, ZHANG Tao, REN Dongfang, et al. Communication emitter identification based on distribution of bispectrum amplitude and phase[J]. IET Science, Measurement & Technology, 2017, 11(8): 1104–1112. doi: 10.1049/iet-smt.2017.0024
    BERTONCINI C, RUDD K, NOUSAIN B, et al. Wavelet fingerprinting of radio-frequency identification (RFID) tags[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4843–4850. doi: 10.1109/TIE.2011.2179276
    ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908
    SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665
    BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]. The 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 116–127.
    HUANG Yuanling and ZHENG Hui. Radio frequency fingerprinting based on the constellation errors[C]. The 18th Asia-Pacific Conference on Communications, Jeju Island, South Korea, 2012: 900–905.
    彭林宁, 胡爱群, 朱长明, 等. 基于星座轨迹图的射频指纹提取方法[J]. 信息安全学报, 2016, 1(1): 50–58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007

    PENG Linning, HU Aiqun, ZHU Changming, et al. Radio fingerprint extraction based on constellation trace figure[J]. Journal of Cyber Security, 2016, 1(1): 50–58. doi: 10.19363/j.cnki.cn10-1380/tn.2016.01.007
    O’SHEA T J, ROY T, and CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168–179. doi: 10.1109/JSTSP.2018.2797022
    KULIN M, KAZAZ T, MOERMAN I, et al. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6: 18484–18501. doi: 10.1109/ACCESS.2018.2818794
    RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146–152. doi: 10.1109/MCOM.2018.1800153
    DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594. doi: 10.1109/LCOMM.2018.2871465
    Agilent Technologies. Agilent technologies wireless test solutions application note 1313: Testing and troubleshooting digital RF communications transmitter designs[EB/OL]. http://literature.cdn.keysight.com/litweb/pdf/5968-3578E.pdf, 2016.
    SRIDHARAN G. Phase noise in multi-carrier systems[D]. [Master dissertation], University of Toronto, 2010: 9–44.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (3875) PDF downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return