Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Micro-movement Parameters of UAV Based on The Concentration of Time-Frequency[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2029-2036. doi: 10.11999/JEIT190309
Citation: Chen SONG, Liangjiang ZHOU, Yirong WU, Chibiao DING. An Estimation Method of Micro-movement Parameters of UAV Based on The Concentration of Time-Frequency[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2029-2036. doi: 10.11999/JEIT190309

An Estimation Method of Micro-movement Parameters of UAV Based on The Concentration of Time-Frequency

doi: 10.11999/JEIT190309
  • Received Date: 2019-04-30
  • Rev Recd Date: 2019-12-23
  • Available Online: 2020-06-28
  • Publish Date: 2020-08-18
  • The micro-Doppler modulation generated by the rotor rotation of UAV can reflect the micro-movement characteristics of such targets. Accurately estimating the rotor length and rotation frequency of the UAV is of great significance for UAV detection and recognition. In this paper, a method for estimating micro-movement parameters of multi-rotor UAV based on Concentration of Time-Frequency (CTF) is proposed for FMCW radar system. The mapping relationship between dynamic parameters of UAV rotor and signal parameters of micro-Doppler component is deduced. Based on time-frequency concentration index in time-frequency rotation domain, the discrimination of micro-motion components is improved. Compared with the traditional methods, the proposed method can improve the accuracy of multi-component micro-Doppler parameter. Furthermore, it has good robustness in low SNR. The validity of the method is verified by simulation and field test.

  • loading
  • TAHMOUSH D. Review of micro-Doppler signatures[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1140–1146. doi: 10.1049/iet-rsn.2015.0118
    CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    XIONG Xiangyu, LIU Hui, DENG Zhenmiao, et al. Micro-Doppler ambiguity resolution with variable shrinkage ratio based on time-delayed cross correlation processing for wideband radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1906–1917. doi: 10.1109/TGRS.2018.2870149
    张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    HE Yongfu, PENG Yu, WANG Shaojun, et al. ADMOST: UAV flight data anomaly detection and mitigation via online subspace tracking[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(4): 1035–1044. doi: 10.1109/TIM.2018.2863499
    SEJDIĆ E, OROVIĆ I, and STANKOVIĆ S. Compressive sensing meets time-frequency: An overview of recent advances in time-frequency processing of sparse signals[J]. Digital Signal Processing, 2018, 77: 22–35. doi: 10.1016/j.dsp.2017.07.016
    OH B S, GUO Xin, WAN Fangyuan, et al. Micro-Doppler mini-UAV classification using empirical-mode decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 227–231. doi: 10.1109/LGRS.2017.2781711
    SONG Chen, WU Yirong, ZHOU Liangjiang, et al. A multicomponent micro-Doppler signal decomposition and parameter estimation method for target recognition[J]. Science China Information Sciences, 2019, 62(2): 29304. doi: 10.1007/s11432-018-9491-y
    章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7(5): 557–564. doi: 10.12000/JR18061

    ZHANG Pengfei, LI Gang, HUO Chaoying, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7(5): 557–564. doi: 10.12000/JR18061
    REN Lingyun, TRAN N, FOROUGHIAN F, et al. Short-time state-space method for micro-Doppler identification of walking subject using UWB impulse Doppler radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3521–3534. doi: 10.1109/TMTT.2018.2829523
    ZHAO Yichao and SU Yi. Cyclostationary phase analysis on micro-Doppler parameters for radar-based small UAVs detection[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 2048–2057. doi: 10.1109/TIM.2018.2811256
    MARÁK K, PETŐ T, BILICZ S, et al. Electromagnetic simulation of rotating propeller blades for radar detection purposes[J]. IEEE Transactions on Magnetics, 2018, 54(3): 7203504. doi: 10.1109/TMAG.2017.2752904
    胡健, 罗迎, 张群, 等. 空间旋转目标窄带雷达干涉式三维成像与微动特征提取[J]. 电子与信息学报, 2019, 41(2): 270–277. doi: 10.11999/JEIT180372

    HU Jian, LUO Ying, ZHANG Qun, et al. Three-dimensional interferometric imaging and micro-motion feature extraction of rotating space targets based on narrowband radar[J]. Journal of Electronics &Information Technology, 2019, 41(2): 270–277. doi: 10.11999/JEIT180372
    SPARR T and KRANE B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4): 277–283. doi: 10.1049/ip-rsn:20030697
    STANKOVIC L, DAKOVIC M, THAYAPARAN T, et al. Inverse radon transform-based micro-Doppler analysis from a reduced set of observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1155–1169. doi: 10.1109/TAES.2014.140098
    ZHOU Yang, BI Daping, SHEN Aiguo, et al. Hough transform-based large micro-motion target detection and estimation in synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 558–565. doi: 10.1049/iet-rsn.2018.5407
    CHEN Shiqian, YANG Yang, WEI Kexiang, et al. Time-varying frequency-modulated component extraction based on parameterized demodulation and singular value decomposition[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 276–285. doi: 10.1109/TIM.2015.2494632
    LI Ao, WU Zhiqiang, LU Huaiyin, et al. Collaborative self-regression method with nonlinear feature based on multi-task learning for image classification[J]. IEEE Access, 2018, 6: 43513–43525. doi: 10.1109/ACCESS.2018.2862159
    STANKOVIC L, DAKOVIC M, and THAYAPARAN T. Time-Frequency Signal Analysis with Applications[M]. Norwood, USA: Artech House, 2013: 205–243.
    李明, 吴娇娇, 左磊, 等. 基于实测数据的空中目标分类识别算法[J]. 电子与信息学报, 2018, 40(11): 2606–2613. doi: 10.11999/JEIT180024

    LI Ming, WU Jiaojiao, ZUO Lei, et al. Aircraft target classification and recognition algorithm based on measured data[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2606–2613. doi: 10.11999/JEIT180024
    YANG Yang, PENG Zhike, DONG Xingjian, et al. Application of parameterized time-frequency analysis on multicomponent frequency modulated signals[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(12): 3169–3180. doi: 10.1109/TIM.2014.2313961
    罗迎, 龚逸帅, 陈怡君, 等. 基于跟踪脉冲的MIMO雷达多目标微动特征提取[J]. 雷达学报, 2018, 7(5): 575–584. doi: 10.12000/JR18035

    LUO Ying, GONG Yishuai, CHEN Yijun, et al. Multi-target micro-motion feature extraction based on tracking pulses in MIMO radar[J]. Journal of Radars, 2018, 7(5): 575–584. doi: 10.12000/JR18035
    XU Huajian, YANG Zhiwei, TIAN Min, et al. An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 715–729. doi: 10.1109/TGRS.2017.2754098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2378) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return