Advanced Search
Volume 42 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
Lun TANG, Jiao XIAO, Yannan WEI, Guofan ZHAO, Qianbin CHEN. Joint Resource Allocation Algorithms Based on Mixed Cloud/Fog Computing in Vehicular Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1926-1933. doi: 10.11999/JEIT190306
Citation: Lun TANG, Jiao XIAO, Yannan WEI, Guofan ZHAO, Qianbin CHEN. Joint Resource Allocation Algorithms Based on Mixed Cloud/Fog Computing in Vehicular Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1926-1933. doi: 10.11999/JEIT190306

Joint Resource Allocation Algorithms Based on Mixed Cloud/Fog Computing in Vehicular Network

doi: 10.11999/JEIT190306
Funds:  The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • Received Date: 2019-04-30
  • Rev Recd Date: 2019-12-13
  • Available Online: 2020-07-01
  • Publish Date: 2020-08-18
  • For the problems of low delay, low power requirement and access congestion caused by computational unloading of mass devices, a Joint Offloading Decision and Resource Allocation Algorithm (JODRAA) is proposed based on cloud-fog hybrid network architecture. Firstly, the algorithm considers the combination of cloud and fog computing, and establishes a resource optimization model to minimize system energy consumption and resource cost with maximum delay as constraint. Secondly, the original problem is transformed into a standard Quadratically Constrained Quadratic Program (QCQP) problem, and a low-complexity joint unloading decision-making and computational resource allocation algorithm is designed. Furthermore, considering the access congestion problem caused by massive computing of unloading devices, an estimation model of the overflow probability of unloading user access request queue is established, and an on-line measurement based time-frequency resource allocation algorithm for fog nodes is proposed. Finally, the iterative bandwidth and power allocation strategy is obtained by using fractional programming theory and Lagrange dual decomposition method. The simulation results show that the proposed algorithm can minimize the system energy consumption and resource cost on the premise of time delay.

  • loading
  • MEBREK A, MERGHEM-BOULAHIA L, and ESSEGHIR M. Efficient green solution for a balanced energy consumption and delay in the IoT-Fog-Cloud computing[C]. The 16th IEEE International Symposium on Network Computing and Applications, Cambridge, USA, 2017: 1–4. doi: 10.1109/NCA.2017.8171359.
    BACCARELLI E, NARANJO P G V, SCARPINITI M, et al. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study[J]. IEEE Access, 2017, 5: 9882–9910. doi: 10.1109/ACCESS.2017.2702013
    LIU Kaiyang, PENG Jun, ZHANG Xiaoyong, et al. A combinatorial optimization for energy-efficient mobile cloud offloading over cellular networks[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841488.
    YANG Lei, CAO Jiannong, TANG Shaojie, et al. A framework for partitioning and execution of data stream applications in mobile cloud computing[C]. The 5th IEEE International Conference on Cloud Computing, Honolulu, USA, 2012: 794–802. doi: 10.1109/CLOUD.2012.97.
    LIU Mengyu and LIU Yuan. Price-based distributed offloading for mobile-edge computing with computation capacity constraints[J]. IEEE Wireless Communications Letters, 2018, 7(3): 420–423. doi: 10.1109/LWC.2017.2780128
    CAO Xiaowen, WANG Feng, XU Jie, et al. Joint computation and communication cooperation for energy-efficient mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 6(3): 4188–4200. doi: 10.1109/JIOT.2018.2875246
    MENG Xianling, WANG Wei, and ZHANG Zhaoyang. Delay-constrained hybrid computation offloading with cloud and fog computing[J]. IEEE Access, 2017, 5: 21355–21367. doi: 10.1109/ACCESS.2017.2748140
    GU H Y, YANG C Y, and FONG B. Low-complexity centralized joint power and admission control in cognitive radio networks[J]. IEEE Communications Letters, 2009, 13(6): 420–422. doi: 10.1109/LCOMM.2009.082173
    JIANG Menglan, CONDOLUCI M, and MAHMOODI T. Network slicing management & prioritization in 5G mobile systems[C]. The 22th European Wireless Conference, Oulu, Finland, 2016: 1–6.
    YAQOOB S, ULLAH A, AKBAR M, et al. Fog-assisted congestion avoidance scheme for internet of vehicles[C]. The 14th International Wireless Communications & Mobile Computing Conference, Limassol, Cyprus, 2018: 618–622. doi: 10.1109/IWCMC.2018.8450402.
    LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184
    LIU Yiming, YU F R, LI Xi, et al. Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12137–12151. doi: 10.1109/TVT.2018.2872912
    LI Qiuping, ZHAO Junhui, GONG Yi, et al. Energy-efficient computation offloading and resource allocation in fog computing for internet of everything[J]. China Communications, 2019, 16(3): 32–41.
    SHAHZADI R, NIAZ A, ALI M, et al. Three tier fog networks: Enabling IoT/5G for latency sensitive applications[J]. China Communications, 2019, 16(3): 1–11.
    SOOKHAK M, YU F R, HE Ying, et al. Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 55–64. doi: 10.1109/MVT.2017.2667499
    LI Di, KAR S, and CUI Shuguang. Distributed quickest detection in sensor networks via two-layer large deviation analysis[J]. IEEE Internet of Things Journal, 2018, 5(2): 930–942. doi: 10.1109/JIOT.2018.2810825
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (2040) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return