Citation: | Haibo ZHANG, Kunlun JING, Kaijian LIU, Xiaofan HE. An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304 |
In the emerging vehicular networks, the task of the car terminal requesting offloading has more stringent requirements for network bandwidth and offload delay, and the proposed Mobile Edge Computing (MEC) in the new communication network research solves better this challenge. This paper focuses on matching the offloaded objects when the car terminal performs the task offloading. By introducing the Software-Defined in-Vehicle Network (SDN-V) to schedule uniformly global variables, which realizes resource control management, device information collection and task information analysis. Based on the differentiated nature of user tasks, a model of importance is defined. On this basis, task priority is divided by designing the task to offload the priority mechanism. For the multi-objective optimization model, the non-convex optimization model is solved by the multiplier method. The simulation results show that compared with other offloading strategies, the proposed offloading mechanism has obvious effects on delay and energy consumption optimization, which can guarantee the benefit of users to the greatest extent.
程刚, 郭达. 车联网现状与发展研究[J]. 移动通信, 2011, 35(17): 23–26. doi: 10.3969/j.issn.1006-1010.2011.17.004
CHENG Gang, and GUO Da. Research on the status and development of internet of vehicles[J]. Mobile Communications, 2011, 35(17): 23–26. doi: 10.3969/j.issn.1006-1010.2011.17.004
|
齐彦丽, 周一青, 刘玲, 等. 融合移动边缘计算的未来5G移动通信网络[J]. 计算机研究与发展, 2018, 55(3): 478–486. doi: 10.7544/issn1000-1239.2018.20170801
QI Yanli, ZHOU Yiqing, LIU Ling, et al. MEC coordinated future 5G mobile wireless networks[J]. Journal of Computer Research and Development, 2018, 55(3): 478–486. doi: 10.7544/issn1000-1239.2018.20170801
|
LI Yong, JIN Depeng, HUI Pan, et al. Optimal base station scheduling for device-to-device communication underlaying cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 34(1): 27–40. doi: 10.1109/JSAC.2015.2452415
|
AMEMIYA K, AKIYAMA Y, KOBAYASHI K, et al. On-site evaluation of a software cellular based MEC system with downlink slicing technology[C]. The 7th IEEE International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–7. doi: 10.1109/CloudNet.2018.8549380.
|
WANG Hansong, LI Xi, JI Hong, et al. Dynamic offloading scheduling scheme for MEC-enabled vehicular networks[C]. 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 206–210. doi: 10.1109/ICCChinaW.2018.8674508.
|
YU Rong, DING Jiefei, HUANG Xumin, et al. Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7844–7856. doi: 10.1109/tvt.2016.2536441
|
鲍楠, 左加阔, 胡晗, 等. 基于SDN的网络资源选择多目标优化算法[J]. 通信学报, 2019, 40(2): 51–59. doi: 10.11959/j.issn.1000?436x.2019031
BAO Nan, ZUO Jiakuo, HU Han, et al. SDN based network resource selection multi-objective optimization algorithm[J]. Journal on Communications, 2019, 40(2): 51–59. doi: 10.11959/j.issn.1000?436x.2019031
|
CHEN Min and HAO Yixue. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587–597. doi: 10.1109/JSAC.2018.2815360
|
ZHANG Ke, MAO Yuming, LENG Supeng, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997360.
|
HU Bo, CHEN Jianye, and LI fengcun. Dynamic service allocation algorithm in mobile edge computing[C]. 2017 International Conference on Information and Communication Technology Convergence, Jeju, South Korea, 2017: 104–109. doi: 10.1109/ICTC.2017.8190951.
|
LI Baozhu, ZHAO Xuhui, HAN Shiyuan, et al. New SDN-based architecture for integrated vehicular cloud computing networking[C]. 2018 International Conference on Selected Topics in Mobile and Wireless Networking, Tangier, Morocco, 2018: 1–4. doi: 10.1109/MoWNet.2018.8428935.
|
HUANG Xumin, YU Rong, KANG Jiawen, et al. Distributed reputation management for secure and efficient vehicular edge computing and networks[J]. IEEE Access, 2017, 5: 25408–25420. doi: 10.1109/ACCESS.2017.2769878
|
TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
|
JAIN R and PAUL S. Network virtualization and software defined networking for cloud computing: A survey[J]. IEEE Communications Magazine, 2013, 51(11): 24–31. doi: 10.1109/MCOM.2013.6658648
|
WILHELMI F, BELLALTA B, CANO C, et al. Implications of decentralized Q-learning resource allocation in wireless networks[C]. The 28th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–5. doi: 10.1109/PIMRC.2017.8292321.
|