Citation: | Jun YANG, Zhengmin MA, Tao SHEN, Zhuangfei CHEN, Yaolian SONG. Multichannel MI-EEG Feature Decoding Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2021, 43(1): 196-203. doi: 10.11999/JEIT190300 |
Regarding as the measure of the electrical fields produced by the active brain, ElectroEncephaloGraphy (EEG) is a brain mapping and neuroimaging technique widely used inside and outside of the clinical domain, which is also widely used in Brain–Computer Interfaces (BCI). However, low spatial resolution is regarded as the deficiency of EEG signified from researches, which can fortunately be made up by synthetic analysis of data from different channels. In order to efficiently obtain subspace features with discriminant characteristics from EEG channel information, a Multi-Channel Convolutional Neural Networks (MC-CNN) model is proposed for MI-EEG decoding. Firstly input data is pre-processed form selected multi-channel signals, then the time-spatial features are extracted using a novel 2D Convolutional Neural Networks (CNN). Finally, these features are transformed to discriminant sub-space of information with Auto-Encoder (AE) to guide the identification network. The experimental results show that the proposed multi-channel spatial feature extraction method has certain advantages in recognition performance and efficiency.
WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain–computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6): 767–791. doi: 10.1016/S1388-2457(02)00057-3
|
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
BELHADJ S A, BENMOUSSAT N, and KRACHAI M D. CSP features extraction and FLDA classification of EEG-based motor imagery for Brain-Computer Interaction[C]. The 2015 4th International Conference on Electrical Engineering, Boumerdes, Algeria, 2015: 1–6. doi: 10.1109/INTEE.2015.7416697.
|
CHEN Jing, HU Bin, XU Lixin, et al. Feature-level fusion of multimodal physiological signals for emotion recognition[C]. 2015 IEEE International Conference on Bioinformatics and Biomedicine, Washington, USA, 2015: 395–399. doi: 10.1109/BIBM.2015.7359713.
|
YANG Jun, YAO Shaowen, and WANG Jin. Deep fusion feature learning network for MI-EEG classification[J]. IEEE Access, 2018, 6: 79050–79059. doi: 10.1109/ACCESS.2018.2877452
|
HUSSAIN S, CALVO R A, and POUR P A. Hybrid fusion approach for detecting affects from multichannel physiology[C]. The 4th International Conference on Affective Computing and Intelligent Interaction, Memphis, USA, 2011: 568–577. doi: 10.1007/978-3-642-24600-5_60.
|
JIRAYUCHAROENSAK S, PAN-NGUM S, and ISRASENA P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation[J]. The Scientific World Journal, 2014, 2014: 627892. doi: 10.1155/2014/627892
|
ZHANG Xiang, YAO Lina, SHENG Q Z, et al. Converting your thoughts to texts: Enabling brain typing via deep feature learning of EEG signals[C]. 2018 IEEE International Conference on Pervasive Computing and Communications, Athens, Greece, 2018: 1–10. doi: 10.1109/PERCOM.2018.8444575.
|
DAI Mengxi, ZHENG Dezhi, NA Rui, et al. EEG classification of motor imagery using a novel deep learning framework[J]. Sensors, 2019, 19(3): 551. doi: 10.3390/s19030551
|
MZURIKWAO D, ANG C S, SAMUEL O W, et al. Efficient channel selection approach for motor imaginary classification based on convolutional neural network[C]. 2018 IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, 2018: 418–421. doi: 10.1109/CBS.2018.8612157.
|
HE Lin, GU Zhenghui, LI Yuanqing, et al. Classifying motor imagery EEG signals by iterative channel elimination according to compound weight[C]. International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, 2010: 71–78.
|
TAN Chuanqi, SUN Fuchun, ZHANG Wenchang, et al. Spatial and spectral features fusion for EEG classification during motor imagery in BCI[C]. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics, Orlando, USA, 2017: 309–312. doi: 10.1109/BHI.2017.7897267.
|
何群, 杜硕, 张园园, 等. 融合单通道框架及多通道框架的运动想象分类[J]. 仪器仪表学报, 2018, 39(9): 20–29.
HE Qun, DU Shuo, ZHANG Yuanyuan, et al. Classification of motor imagery based on single-channel frame and multi-channel frame[J]. Chinese Journal of Scientific Instrument, 2018, 39(9): 20–29.
|
CHUNG Y G, KIM M K, and KIM S P. Inter-channel connectivity of motor imagery EEG signals for a noninvasive BCI application[C]. 2011 International Workshop on Pattern Recognition in NeuroImaging, Seoul, South Korea, 2011: 49–52. doi: 10.1109/PRNI.2011.9.
|
LECUN Y, KAVUKCUOGLU K, and FARABET C. Convolutional networks and applications in vision[C]. 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010: 253–256. doi: 10.1109/ISCAS.2010.5537907.
|
ZHANG Jin, YAN Chungang, and GONG Xiaoliang. Deep convolutional neural network for decoding motor imagery based brain computer interface[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242581.
|
MATEI R P. Design method for orientation-selective CNN filters[C]. 2004 IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 2004: III-105. doi: 10.1109/ISCAS.2004.1328694.
|
LEE W Y, PARK S M, and SIM K B. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-free harmony search algorithm[J]. Optik, 2018, 172: 359–367. doi: 10.1016/j.ijleo.2018.07.044
|
MUÑOZ-ORDÓÑEZ J, COBOS C, MENDOZA M, et al. Framework for the training of deep neural networks in tensorFlow using metaheuristics[C]. The 19th International Conference on Intelligent Data Engineering and Automated Learning, Madrid, Spain, 2018: 801–811. doi: 10.1007/978-3-030-03493-1_83.
|
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–15.
|
HE Lin, HU Youpan, LI Yuanqing, et al. Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG[J]. Neurocomputing, 2013, 121: 423–433. doi: 10.1016/j.neucom.2013.05.005
|