Citation: | Yan ZUO, Xialei ZHOU, Taoran JIANG. Algebraic Solution for 3D Localization of Multistatic Passive Radar in the Presence of Sensor Position Errors[J]. Journal of Electronics & Information Technology, 2020, 42(3): 555-562. doi: 10.11999/JEIT190292 |
An observer is placed on the airborne in the multistatic passive radar localization system. The error in observer position may seriously affect the localization accuracy. An algebraic closed-form solution is proposed for 3D localization of multistatic passive radar in the presence of sensor position errors. Firstly, the nonlinear Bistatic Range Difference (BRD) measurement equations are linearized by proper additional parameters and a pseudo-linear estimation model is given accordingly. Then a modified Two-Step Weighted Least Squares (TS-WLS) algorithm is developed with considering the statistic characteristics of the observer position measurement noises. Finally the Cramer-Rao Lower Bound (CRLB) and the theoretical error of the algorithm are derived. Simulation results show that the proposed algorithm can achieve the CRLB in a moderate level of noises.
LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006
|
INGGS M, TONG C, NADJIASNGAR R, et al. Planning and design phases of a commensal radar system in the FM broadcast band[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 50–63. doi: 10.1109/MAES.2014.130165
|
CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network: Initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2460–2469. doi: 10.1109/TAES.2015.130270
|
GASSIER G, CHABRIEL G, BARRÈRE J, et al. A unifying approach for disturbance cancellation and target detection in passive radar using OFDM[J]. IEEE Transactions on Signal Processing, 2016, 64(22): 5959–5971. doi: 10.1109/TSP.2016.2600511
|
王鼎, 魏帅. 基于外辐射源的约束总体最小二乘定位算法及其理论性能分析[J]. 中国科学: 信息科学, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397
WANG Ding and WEI Shuai. The constrained-total-least-squares localization algorithm and performance analysis based on an external illuminator[J]. Scientia Sinica Informationis, 2015, 45(11): 1466–1489. doi: 10.1360/N112014-00397
|
MALANOWSKI M and KULPA K. Two methods for target localization in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 572–580. doi: 10.1109/TAES.2012.6129656
|
NOROOZI A and SEBT M A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671. doi: 10.1109/TAES.2017.2669558
|
CHAN Y T and HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905–1915. doi: 10.1109/78.301830
|
WANG Yue and HO K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4532–4544. doi: 10.1109/TSP.2013.2271750
|
曲付勇, 孟祥伟. 基于约束总体最小二乘方法的到达时差到达频差无源定位算法[J]. 电子与信息学报, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
QU Fuyong and MENG Xiangwei. Source localization using TDOA and FDOA measurements based on constrained total least squares algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1075–1081. doi: 10.3724/SP.J.1146.2013.01019
|
GODRICH H, HAIMOVICH A M, and BLUM R S. Target localization accuracy gain in MIMO radar-based systems[J]. IEEE Transactions on Information Theory, 2010, 56(6): 2783–2803. doi: 10.1109/tit.2010.2046246
|
ALAM M and JAMIL K. Maximum likelihood (ML) based localization algorithm for multi-static passive radar using range-only measurements[C]. 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 180–184. doi: 10.1109/RadarConf.2015.7411876.
|
NOROOZI A and SEBT M A. Target localization from bistatic range measurements in multi-transmitter multi-receiver passive radar[J]. IEEE Signal Processing Letters, 2015, 22(12): 2445–2449. doi: 10.1109/LSP.2015.2491961
|
NOROOZI A and SEBT M A. Weighted least squares target location estimation in multi-transmitter multi-receiver passive radar using bistatic range measurements[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1088–1097. doi: 10.1049/iet-rsn.2015.0446
|
AMIRI R, BEHNIA F, and ZAMANI H. Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars[J]. IEEE Signal Processing Letters, 2017, 24(3): 299–303. doi: 10.1109/LSP.2017.2660545
|
AMIRI R and BEHNIA F. An efficient weighted least squares estimator for elliptic localization in distributed MIMO radars[J]. IEEE Signal Processing Letters, 2017, 24(6): 902–906. doi: 10.1109/LSP.2017.2697500
|
NOROOZI A, OVEIS A H, and SEBT M A. Iterative target localization in distributed MIMO radar from bistatic range measurements[J]. IEEE Signal Processing Letters, 2017, 24(11): 1709–1713. doi: 10.1109/LSP.2017.2747479
|
AMIRI R, BEHNIA F, and SADR M A M. Exact solution for elliptic localization in distributed MIMO radar systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1075–1086. doi: 10.1109/TVT.2017.2762631
|
赵勇胜, 赵拥军, 赵闯, 等. 一种新的分布式MIMO雷达系统运动目标定位代数解算法[J]. 电子与信息学报, 2018, 40(3): 548–556. doi: 10.11999/JEIT170510
ZHAO Yongsheng, ZHAO Yongjun, ZHAO Chuang, et al. New algebraic algorithm for moving target localization in distributed MIMO radar systems[J]. Journal of Electronics &Information Technology, 2018, 40(3): 548–556. doi: 10.11999/JEIT170510
|
ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar[J]. Signal Processing, 2018, 143: 303–310. doi: 10.1016/j.sigpro.2017.09.014
|