Advanced Search
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
Lun TANG, Yu ZHOU, Qi TAN, Yannan WEI, Qianbin CHEN. Virtual Network Function Migration Algorithm Based on Reinforcement Learning for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(3): 669-677. doi: 10.11999/JEIT190290
Citation: Lun TANG, Yu ZHOU, Qi TAN, Yannan WEI, Qianbin CHEN. Virtual Network Function Migration Algorithm Based on Reinforcement Learning for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2020, 42(3): 669-677. doi: 10.11999/JEIT190290

Virtual Network Function Migration Algorithm Based on Reinforcement Learning for 5G Network Slicing

doi: 10.11999/JEIT190290
Funds:  The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • Received Date: 2019-04-25
  • Rev Recd Date: 2019-09-11
  • Available Online: 2019-09-19
  • Publish Date: 2020-03-19
  • In order to solve the Virtual Network Function (VNF) migration optimization problem caused by the dynamicity of service requests on the 5G network slicing architecture, firstly, a stochastic optimization model based on Constrained Markov Decision Process (CMDP) is established to realize the dynamic deployment of multi-type Service Function Chaining (SFC). This model aims to minimize the average sum operating energy consumption of general servers, and is subject to the average delay constraint for each slicing as well as the average cache, bandwidth resource consumption constraints. Secondly, in order to overcome the issue of having difficulties in acquiring the accurate transition probabilities of the system states and the excessive state space in the optimization model, a VNF intelligent migration learning algorithm based on reinforcement learning framework is proposed. The algorithm approximates the behavior value function by Convolutional Neural Network (CNN), so as to formulate a suitable VNF migration strategy and CPU resource allocation scheme for each network slicing according to the current system state in each discrete time slot. The simulation results show that the proposed algorithm can effectively meet the QoS requirements of each slice while reducing the average energy consumption of the infrastructure.

  • loading
  • GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72–79. doi: 10.1109/mwc.2016.7422408
    SUGISONO K, FUKUOKA A, and YAMAZAKI H. Migration for VNF instances forming service chain[C]. The 7th IEEE International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–3. doi: 10.1109/CloudNet.2018.8549194.
    ZHENG Qinghua, LI Rui, LI Xiuqi, et al. Virtual machine consolidated placement based on multi-objective biogeography-based optimization[J]. Future Generation Computer Systems, 2016, 54: 95–122. doi: 10.1016/j.future.2015.02.010
    ZHANG Xiaoqing, YUE Qiang, and HE Zhongtang. Dynamic Energy-efficient Virtual Machine Placement Optimization for Virtualized Clouds[M]. JIA Limin, LIU Zhigang, QIN Yong, et al. Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation (EITRT2013)-Volume II. Berlin, Heidelberg: Springer, 2014, 288: 439–448. doi: 10.1007/978-3-642-53751-6_47.
    ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437
    ERAMO V, MIUCCI E, AMMAR M, et al. An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures[J]. IEEE/ACM Transactions on Networking, 2017, 25(4): 2008–2025. doi: 10.1109/TNET.2017.2668470
    WEN Tao, YU Hongfang, SUN Gang, et al. Network function consolidation in service function chaining orchestration[C]. 2016 IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016: 1–6. doi: 10.1109/ICC.2016.7510679.
    YANG Jian, ZHANG Shuben, WU Xiaomin, et al. Online learning-based server provisioning for electricity cost reduction in data center[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 1044–1051. doi: 10.1109/TCST.2016.2575801
    CHENG Aolin, LI Jian, YU Yuling, et al. Delay-sensitive user scheduling and power control in heterogeneous networks[J]. IET Networks, 2015, 4(3): 175–184. doi: 10.1049/iet-net.2014.0026
    LI Rongpeng, ZHAO Zhifeng, CHEN Xianfu, et al. TACT: A transfer actor-critic learning framework for energy saving in cellular radio access networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2000–2011. doi: 10.1109/TWC.2014.022014.130840
    WANG Shangxing, LIU Hanpeng, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257–265. doi: 10.1109/TCCN.2018.2809722
    HUANG Xiaohong, YUAN Tingting, QIAO Guanghua, et al. Deep reinforcement learning for multimedia traffic control in software defined networking[J]. IEEE Network, 2018, 32(6): 35–41. doi: 10.1109/MNET.2018.1800097
    HE Ying, ZHANG Zheng, YU F R, et al. Deep-reinforcement-learning-based optimization for cache-enabled opportunistic interference alignment wireless networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10433–10445. doi: 10.1109/TVT.2017.2751641
    GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. The International Conference on Artificial Intelligence and Statistics, Sardinia, 2010: 249–256.
    PERUMAL V and SUBBIAH S. Power-conservative server consolidation based resource management in cloud[J]. International Journal of Network Management, 2014, 24(6): 415–432. doi: 10.1002/nem.1873
    QU Long, ASSI C, SHABAN K, et al. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (4392) PDF downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return