Citation: | Dajiang LEI, Ce ZHANG, Zhixing LI, Yu WU. Remote Sensing Image Fusion Based on Generative Adversarial Network with Multi-stream Fusion Architecture[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1942-1949. doi: 10.11999/JEIT190273 |
The generative adversarial network receives extensive attention in the study of computer vision such as image fusion and image super-resolution, due to its strong ability of generating high quality images. At present, the remote sensing image fusion method based on generative adversarial network only learns the mapping between the images, and lacks the unique Pan-sharpening domain knowledge. This paper proposes a remote sensing image fusion method based on optimized generative adversarial network with the integration of the spatial structure information of panchromatic image. The proposed algorithm extracts the spatial structure information of the panchromatic image by the gradient operator. The extracted feature would be added to both the discriminator and the generator which uses a multi-stream fusion architecture. The corresponding optimization objective and fusion rules are then designed to improve the quality of the fused image. Experiments on images acquired by WorldView-3 satellites demonstrate that the proposed method can generate high quality fused images, which is better than the most of advanced remote sensing image fusion methods in both subjective visual and objective evaluation indicators.
THOMAS C, RANCHIN T, WALD L, et al. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1301–1312. doi: 10.1109/TGRS.2007.912448
|
LIU Pengfei, XIAO Liang, ZHANG Jun, et al. Spatial-hessian-feature-guided variational model for pan-sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2235–2253. doi: 10.1109/TGRS.2015.2497966
|
纪峰, 李泽仁, 常霞, 等. 基于PCA和NSCT变换的遥感图像融合方法[J]. 图学学报, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247
JI Feng, LI Zeren, CHANG Xia, et al. Remote sensing image fusion method based on PCA and NSCT transform[J]. Journal of Graphics, 2017, 38(2): 247–252. doi: 10.11996/JG.j.2095-302X.2017020247
|
RAHMANI S, STRAIT M, MERKURJEV D, et al. An adaptive IHS Pan-sharpening method[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 746–750. doi: 10.1109/LGRS.2010.2046715
|
GARZELLI A, NENCINI F, and CAPOBIANCO L. Optimal MMSE Pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 228–236. doi: 10.1109/TGRS.2007.907604
|
RANCHIN T and WALD L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(1): 49–61.
|
肖化超, 周诠, 郑小松. 基于IHS变换和Curvelet变换的卫星遥感图像融合方法[J]. 华南理工大学学报: 自然科学版, 2016, 44(1): 58–64. doi: 10.3969/j.issn.1000-565X.2016.01.009
XIAO Huachao, ZHOU Quan, and ZHENG Xiaosong. A fusion method of satellite remote sensing image based on IHS transform and Curvelet transform[J]. Journal of South China University of Technology:Natural Science Edition, 2016, 44(1): 58–64. doi: 10.3969/j.issn.1000-565X.2016.01.009
|
ZENG Delu, HU Yuwen, HUANG Yue, et al. Pan-sharpening with structural consistency and ℓ1/2 gradient prior[J]. Remote Sensing Letters, 2016, 7(12): 1170–1179. doi: 10.1080/2150704X.2016.1222098
|
LIU Yu, CHEN Xun, WANG Zengfu, et al. Deep learning for pixel-level image fusion: Recent advances and future prospects[J]. Information Fusion, 2018, 42: 158–173. doi: 10.1016/J.INFFUS.2017.10.007
|
YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet: A deep network architecture for pan-sharpening[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1753–1761. doi: 10.1109/ICCV.2017.193.
|
MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7): 594. doi: 10.3390/rs8070594
|
LIU Xiangyu, WANG Yunhong, and LIU Qingjie. PSGAN: A generative adversarial network for remote sensing image Pan-sharpening[C]. The 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 873–877. doi: 10.1109/ICIP.2018.8451049.
|
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Cambridge, USA, 2014: 2672–2680.
|
AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(5): 591–596. doi: 10.14358/PERS.72.5.591
|
RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
GARZELLI A and NENCINI F. Hypercomplex quality assessment of multi/hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 662–665. doi: 10.1109/LGRS.2009.2022650
|
WALD L. Data Fusion: Definitions and Architectures: Fusion of Images of Different Spatial Resolutions[M]. Paris, France: Ecole des Mines de Paris, 2002: 165–189.
|
VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2565–2586. doi: 10.1109/TGRS.2014.2361734
|
张新曼, 韩九强. 基于视觉特性的多尺度对比度塔图像融合及性能评价[J]. 西安交通大学学报, 2004, 38(4): 380–383. doi: 10.3321/j.issn.0253-987X.2004.04.013
ZHANG Xinman and HAN Jiuqiang. Image fusion of multiscale contrast pyramid-Based vision feature and its performance evaluation[J]. Journal of Xi’an Jiaotong University, 2004, 38(4): 380–383. doi: 10.3321/j.issn.0253-987X.2004.04.013
|
ALPARONE L, AIAZZI B, BARONTI S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering & Remote Sensing, 2008, 74(2): 193–200. doi: 10.14358/PERS.74.2.193
|