Advanced Search
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
Bin SHEN, Hebiao WU, Taiping CUI, Qianbin CHEN. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System[J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270
Citation: Bin SHEN, Hebiao WU, Taiping CUI, Qianbin CHEN. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System[J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. doi: 10.11999/JEIT190270

An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System

doi: 10.11999/JEIT190270
Funds:  The National Nature Science Foundation of China (61571073)
  • Received Date: 2019-04-18
  • Rev Recd Date: 2019-07-28
  • Available Online: 2019-07-31
  • Publish Date: 2020-03-19
  • As one of the key 5G technologies, Non-Orthogonal Multiple Access (NOMA) can improve spectrum efficiency and increase the number of user connections by utilizing the resources in a non-orthogonal manner. In the uplink grant-free NOMA system, the Compressive Sensing (CS) and generalized Orthogonal Matching Pursuit (gOMP) algorithm are introduced in active user and data detection, to enhance the system performance. The gOMP algorithm is literally generalized version of the Orthogonal Matching Pursuit (OMP) algorithm, in the sense that multiple indices are identified per iteration. Meanwhile, the optimal number of indices selected per iteration in the gOMP algorithm is addressed to obtain the optimal performance. Simulations verify that the gOMP algorithm with optimal number of indices has better recovery performance, compared with the greedy pursuit algorithms and the Gradient Projection Sparse Reconstruction (GPSR) algorithm. In addition, given different system configurations in terms of the number of active users and subcarriers, the proposed gOMP with optimal number of indices also exhibits better performance than that of the other algorithms mentioned in this paper.

  • loading
  • OSSEIRAN A, BOCCARDI F, BRAUN V, et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project[J]. IEEE Communications Magazine, 2014, 52(5): 26–35. doi: 10.1109/MCOM.2014.6815890
    DAI Linglong, WANG Bichai, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    DAI Linglong, WANG Bichai, YUAN Yifei, et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74–81. doi: 10.1109/MCOM.2015.7263349
    ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116
    HONG J P, CHOI W, and RAO B D. Sparsity controlled random multiple access with compressed sensing[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 998–1010. doi: 10.1109/TWC.2014.2363165
    CHOI J W, SHIM B, DING Yacong, et al. Compressed sensing for wireless communications: Useful tips and tricks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1527–1550. doi: 10.1109/COMST.2017.2664421
    李燕龙, 陈晓, 詹德满, 等. 非正交多址接入中稀疏多用户检测方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026

    LI Yanlong, CHEN Xiao, ZHEN Deman, et al. Method of sparse multi-user detection in non-orthogonal multiple access[J]. Journal of Xidian University, 2017, 44(3): 151–156. doi: 10.3969/j.issn.1001-2400.2017.03.026
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    NEEDELL D and VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310–316. doi: 10.1109/JSTSP.2010.2042412
    DAI Wei and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230–2249. doi: 10.1109/TIT.2009.2016006
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002
    WANG Jian, KWON S, and SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202–6216. doi: 10.1109/TSP.2012.2218810
    WANG Bichai, DAI Linglong, ZHANG Yuan, et al. Dynamic compressive sensing-based multi-user detection for uplink grant-free NOMA[J]. IEEE Communications Letters, 2016, 20(11): 2320–2323. doi: 10.1109/LCOMM.2016.2602264
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586–597. doi: 10.1109/JSTSP.2007.910281
    WANG Bichai, DAI Linglong, MIR T, et al. Joint user activity and data detection based on structured compressive sensing for NOMA[J]. IEEE Communications Letters, 2016, 20(7): 1473–1476. doi: 10.1109/LCOMM.2016.2560180
    WEI Chao, LIU Huaping, ZHANG Zaichen, et al. Approximate message passing-based joint user activity and data detection for NOMA[J]. IEEE Communications Letters, 2017, 21(3): 640–643. doi: 10.1109/LCOMM.2016.2624297
    CIRIK A C, BALASUBRAMANYA N M, and LAMPE L. Multi-user detection using ADMM-based compressive sensing for uplink grant-free NOMA[J]. IEEE Wireless Communications Letters, 2018, 7(1): 46–49. doi: 10.1109/LWC.2017.2752165
    ZHU Hao and GIANNAKIS G B. Exploiting sparse user activity in multiuser detection[J]. IEEE Transactions on Communications, 2011, 59(2): 454–465. doi: 10.1109/TCOMM.2011.121410.090570
    WANG Jian and SHIM B. Exact recovery of sparse signals using orthogonal matching pursuit: How many iterations do we need?[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4194–4202. doi: 10.1109/TSP.2016.2568162
    孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813

    SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (3129) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return