Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Xiaoping LIANG, Zhenjun GUO, Changhong ZHU. BP Neural Network Fuzzy Image Restoration Basedon Brain Storming Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2980-2986. doi: 10.11999/JEIT190261
Citation: Xiaoping LIANG, Zhenjun GUO, Changhong ZHU. BP Neural Network Fuzzy Image Restoration Basedon Brain Storming Optimization Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2980-2986. doi: 10.11999/JEIT190261

BP Neural Network Fuzzy Image Restoration Basedon Brain Storming Optimization Algorithm

doi: 10.11999/JEIT190261
Funds:  2019 Guangxi University Young and Middle-aged Teachers’ Basic Scientific Research Ability Improvement Project (2019KY0802), The Project of Guilin University of Aerospace Technology Electronic Information Key Discipline and Internet Of Things and Big Data Application Research Center (KJPT201805)
  • Received Date: 2019-04-17
  • Rev Recd Date: 2019-09-03
  • Available Online: 2019-09-12
  • Publish Date: 2019-12-01
  • A kind of restoration method of BP neural network fuzzy image based on Optimized Brain Storming intelligent Optimized(OBSO-BP) algorithm is proposed in this paper. With the method of brain storming intelligent optimized algorithm which is optimized in both clustering and variation, issues of multi-peak high-dimensional function is easily solved. This method optimizes brain storming intelligence algorithm from two aspects of clustering and mutation. This method makes use of the characteristics of brain storming optimization algorithm, which is easy to solve multi-peak and high-dimensional function problems, to automatically search for better initial weights and thresholds of BP neural network, thus reducing the sensitivity of BP network to its initial weights and thresholds, avoiding the network falling into local optimal solution, increasing the convergence speed of the network and reducing the network error and improving the quality of image restoration. Twenty different images are adopted to the image restoration experiment of their fuzzy images with Wiener filtering restoration(Wiener), Wiener filtering restoration based on optimized Brain Storming intelligent Optimized algorithm(Wiener-BSO), BP neural network restoration and BP neural network restoration based on optimized Brain Storming intelligent Optimized algorithm(BSO-BP). Results show that a better effect of image restoration can be achieved with this method.
  • loading
  • 刘海波, 杨杰, 吴正平, 等. 基于区间估计的单幅图像快速去雾[J]. 电子与信息学报, 2016, 38(2): 381–388. doi: 10.11999/JEIT150403

    LIU Haibo, YANG Jie, WU Zhengping, et al. Fast single image dehazing based on interval estimation[J]. Journal of Electronics &Information Technology, 2016, 38(2): 381–388. doi: 10.11999/JEIT150403
    梁晓萍, 罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报: 自然科学版, 2017, 35(4): 17–23.

    LIANG Xiaoping and LUO Xiaoshu. The adaptive wiener filtering deblurring based on the genetic algorithm[J]. Journal of Guangxi Normal University:Natural Science Edition, 2017, 35(4): 17–23.
    何人杰, 樊养余, WANG Zhiyong, 等. 基于非局部全变分正则化优化的单幅雾天图像恢复新方法[J]. 电子与信息学报, 2016, 38(10): 2509–2514. doi: 10.11999/JEIT160208

    HE Renjie, FAN Yangyu, WANG Zhiyong, et al. Novel single hazy image restoration method based on nonlocal total variation regularization optimization[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2509–2514. doi: 10.11999/JEIT160208
    杨爱萍, 郑佳, 王建, 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483

    YANG Aiping, ZHENG Jia, WANG Jian, et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2541–2547. doi: 10.11999/JEIT150483
    沈峘, 李舜酩, 毛建国, 等. 数字图像复原技术综述[J]. 中国图象图形学报, 2009, 14(9): 1764–1775. doi: 10.11834/jig.20090909

    SHEN Huan, LI Shunming, MAO Jianguo, et al. Digital image restoration techniques: A review[J]. Journal of Image and Graphics, 2009, 14(9): 1764–1775. doi: 10.11834/jig.20090909
    HE Fei and ZHANG Lingying. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network[J]. Journal of Process Control, 2018, 66: 51–58. doi: 10.1016/j.jprocont.2018.03.005
    LIANG Yueji, REN Chao, WANG Haoyu, et al. Research on soil moisture inversion method based on GA-BP neural network model[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2087–2103. doi: 10.1080/01431161.2018.1484961
    CHEN Yegang. Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network[J]. Computing, 2018, 100(8): 825–838. doi: 10.1007/s00607-018-0628-3
    李青峰, 胡访宇. 利用BP神经网络实现监控图像盲复原[J]. 计算机仿真, 2009, 26(5): 223–226. doi: 10.3969/j.issn.1006-9348.2009.05.058

    LI Qingfeng and HU Fangyu. Blind restoration of monitoring image based on BP neural network[J]. Computer Simulation, 2009, 26(5): 223–226. doi: 10.3969/j.issn.1006-9348.2009.05.058
    赵秀谊. 头脑风暴优化算法及其应用研究[D]. [硕士论文], 西安理工大学, 2013.

    ZHAO Xiuyi. Research and application of brain storm optimization algorithm[D]. [Master dissertation], Xi’an University of Technology, 2013.
    SHI Yuhui. Brain Storm Optimization Algorithm[M]. Advances in Swarm Intelligence. Berlin Heidelberg: Springer, 2011: 303–309. doi: 10.1007/978-3-642-21515-5_36.
    周恒俊. 智能优化算法及其在图像检索中的应用研究[D]. [硕士论文], 山东大学, 2016.

    ZHOU Hengjun. Research on intelligent optimization algorithm and its application in image retrieval[D]. [Master dissertation], Shandong University, 2016.
    陈宏伟, 鄢来仪, 叶志伟. 头脑风暴算法在多阈值Otsu分割法中的应用[J]. 湖北工业大学学报, 2017, 32(5): 59–62. doi: 10.3969/j.issn.1003-4684.2017.05.016

    CHEN Hongwei, YAN Laiyi, and YE Zhiwei. Application of brain storm optimization algorithm in multilevel threshold Otsu segmentation[J]. Journal of Hubei University of Technology, 2017, 32(5): 59–62. doi: 10.3969/j.issn.1003-4684.2017.05.016
    梁志刚, 顾军华. 改进头脑风暴优化算法与Powell算法结合的医学图像配准[J]. 计算机应用, 2018, 38(9): 2683–2688. doi: 10.11772/j.issn.1001-9081.2018020353

    LIANG Zhigang and GU Junhua. Medical image registration by integrating modified brain storm optimization algorithm and Powell algorithm[J]. Journal of Computer Applications, 2018, 38(9): 2683–2688. doi: 10.11772/j.issn.1001-9081.2018020353
    HECHT-NIELSEN R. Theory of the backpropagation neural network[C]. International 1989 Joint Conference on Neural Networks, Washington, USA, 1989: 593–605. doi: 10.1109/IJCNN.1989.118638.
    ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]. The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, USA, 1996: 226–231.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (4011) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return