Advanced Search
Volume 42 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
Luzhao CHEN, Yongqiang FENG, Ruijie GUO, Wanhua ZHU, Guangyou FANG. Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background[J]. Journal of Electronics & Information Technology, 2020, 42(3): 573-581. doi: 10.11999/JEIT190236
Citation: Luzhao CHEN, Yongqiang FENG, Ruijie GUO, Wanhua ZHU, Guangyou FANG. Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background[J]. Journal of Electronics & Information Technology, 2020, 42(3): 573-581. doi: 10.11999/JEIT190236

Magnetic Dipole Object Tracking Algorithm Based on Magnetometer Array in Geomagnetic Background

doi: 10.11999/JEIT190236
Funds:  The Youth Program of National Natural Science Foundation of China (41704177), The National Key R&D Program of China (2018YFC0603201)
  • Received Date: 2019-04-10
  • Rev Recd Date: 2019-12-01
  • Available Online: 2019-12-09
  • Publish Date: 2020-03-19
  • In order to solve the problem of geomagnetic interference and model nonlinearity in the tracking process of magnetic dipole under geomagnetic background, Monte Carlo Kalman Filter (MCKF) tracking method based on differential magnetic anomaly is proposed in this paper. The new tracking method takes the difference of magnetic field measured by sensor array as the observation signal, and uses Monte Carlo Kalman Filtering (MCKF) algorithm to solve the nonlinear problem of the model to realize the real-time tracking of magnetic dipole targets. The simulation results show that the proposed method is more accurate than the traditional Extended Kalman Filter (EKF) or Untracked Kalman Filter (UKF) in the stable tracking process. The results of real geomagnetic background tracking experiments show that the proposed algorithm has better tracking performance under low SNR.

  • loading
  • IOANNIDIS G. Identification of a ship or submarine from its magnetic signature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(3): 327–329. doi: 10.1109/TAES.1977.308404
    FAGGIONI O, SOLDANI M, GABELLONE A, et al. Undersea harbour defence: A new choice in magnetic networks[J]. Journal of Applied Geophysics, 2010, 72(1): 46–56. doi: 10.1016/j.jappgeo.2010.07.001
    ZHANG Mengying, WANG Hua, GE Lin, et al. Automatic search algorithms for near-field ferromagnetic targets based on magnetic anomaly detection[J]. Mathematical Problems in Engineering, 2018, 2018: 2130236. doi: 10.1155/2018/2130236
    SHEINKER A, LERNER B, SALOMONSKI N, et al. Localization and magnetic moment estimation of a ferromagnetic target by simulated annealing[J]. Measurement Science and Technology, 2007, 18(11): 3451–3457. doi: 10.1088/0957-0233/18/11/027
    SHEINKER A, SALOMONSKI N, GINZBURG B, et al. Remote sensing of a magnetic target utilizing population based incremental learning[J]. Sensors and Actuators A: Physical, 2008, 143(2): 215–223. doi: 10.1016/j.sna.2007.10.064
    YANG Wan’an, HU Chao, LI Mao, et al. A new tracking system for three magnetic objectives[J]. IEEE Transactions on Magnetics, 2010, 46(12): 4023–4029. doi: 10.1109/tmag.2010.2076823
    GAO Xiang, YAN Shenggang, and LI Bi. A novel method of localization for moving objects with an alternating magnetic field[J]. Sensors, 2017, 17(4): 923(1–12). doi: 10.3390/s17040923
    WANG Chen, QU Xiaodong, ZHANG Xiaojuan, et al. A fast calibration method for magnetometer array and the application of ferromagnetic target localization[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1743–1750. doi: 10.1109/TIM.2017.2668558
    贾文抖, 林春生, 陈春行, 等. 针对磁目标定位失效的改进欧拉定位方法[J]. 海军工程大学学报, 2018, 30(3): 37–42.

    JIA Wendou, LIN Chunsheng, CHEN Chunxing, et al. Improved Euler method for preventing failure of positioning magnetic target[J]. Journal of Naval University of Engineering, 2018, 30(3): 37–42.
    WIEGERT R and OESCHGER J. Generalized magnetic gradient contraction based method for detection, localization and discrimination of underwater mines and unexploded ordnance[C]. The OCEANS 2005 MTS/IEEE, Washington, USA, 2005: 1325–1332.
    BIRSAN M. Non-linear Kalman filters for tracking a magnetic dipole[R]. Defence R&D Canada, Atlantic, 2005.
    BIRSAN M. Unscented particle filter for tracking a magnetic dipole target[C]. The OCEANS 2005 MTS/IEEE, Washington, USA, 2005, 1656–1659.
    KOZICK R J and SADLER B M. Algorithms for tracking with an array of magnetic sensors[C]. The 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, Darmstadt, Germany, 2008: 423–427.
    ALHMIEDAT T, ABU TALEB A, and BSOUL M. A study on threads detection and tracking systems for military applications using WSNs[J]. International Journal of Computer Applications, 2012, 40(15): 12–18. doi: 10.5120/5055-7347
    张朝阳, 肖昌汉, 高俊吉, 等. 磁性物体磁偶极子模型适用性的试验研究[J]. 应用基础与工程科学学报, 2010, 18(5): 862–868. doi: 10.3969/j.issn.1005-0930.2010.05.016

    ZHANG Zhaoyang, XIAO Changhan, GAO Junji, et al. Experiment research of magnetic dipole model applicability for a magnetic object[J]. Journal of Basic Science and Engineering, 2010, 18(5): 862–868. doi: 10.3969/j.issn.1005-0930.2010.05.016
    于振涛, 吕俊伟, 张本涛. 基于海底磁力仪阵列的磁性目标定位方法[J]. 武汉理工大学学报, 2012, 34(6): 131–135. doi: 10.3963/j.issn.1671-4431.2012.06.028

    YU Zhentao, LÜ Junwei, and ZHANG Bentao. A method to localize magnetic target based on a seabed array of magnetometers[J]. Journal of Wuhan University of Technology, 2012, 34(6): 131–135. doi: 10.3963/j.issn.1671-4431.2012.06.028
    吴志东, 周穗华, 陈志毅. 基于非线性滤波算法的磁偶极子跟踪[J]. 鱼雷技术, 2013, 21(4): 262–267. doi: 10.3969/j.issn.1673-1948.2013.04.006

    WU Zhidong, ZHOU Suihua, and CHEN Zhiyi. Magnetic dipole tracking based on nonlinear filtering algorithm[J]. Torpedo Technology, 2013, 21(4): 262–267. doi: 10.3969/j.issn.1673-1948.2013.04.006
    高俊吉, 刘大明, 周国华. 水中非合作运动磁性目标跟踪及参数估计[J]. 哈尔滨工程大学学报, 2013, 34(9): 1124–1130. doi: 10.3969/j.issn.1006-7043.201209033

    GAO Junji, LIU Daming, and ZHOU Guohua. Study on the tracking and parameter estimating of unknown moving magnetism objects[J]. Journal of Harbin Engineering University, 2013, 34(9): 1124–1130. doi: 10.3969/j.issn.1006-7043.201209033
    张宏欣, 周穗华, 吴志东, 等. 基于改进粗糙化粒子滤波的磁偶极子跟踪[J]. 华中科技大学学报: 自然科学版, 2014, 42(9): 76–80. doi: 10.13245/j.hust.140917

    ZHANG Hongxin, ZHOU Suihua, WU Zhidong, et al. Magnetic dipole localization based on improved roughening particle filter[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2014, 42(9): 76–80. doi: 10.13245/j.hust.140917
    周穗华, 张文成, 张宏欣. 基于混合卡尔曼滤波的磁偶极子目标跟踪[J]. 水雷战与舰船防护, 2015, 23(4): 7–11.

    ZHOU Suihua, ZHANG Wencheng, and ZHANG Hongxin. Magnetic dipole target tracking based on mixed kalman filter[J]. Mine Warfare &Ship Self-defence, 2015, 23(4): 7–11.
    吴垣甫, 孙跃. 基于递推更新卡尔曼滤波的磁偶极子目标跟踪[J]. 北京航空航天大学学报, 2017, 43(9): 1805–1812. doi: 10.13700/j.bh.1001-5965.2016.0694

    WU Yuanfu and SUN Yue. Magnetic dipole target tracking based on recursive update Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1805–1812. doi: 10.13700/j.bh.1001-5965.2016.0694
    张宏欣, 周穗华, 张伽伟. 磁偶极子跟踪的渐进贝叶斯滤波方法[J]. 自动化学报, 2017, 43(5): 822–834. doi: 10.16383/j.aas.2017.c160052

    ZHANG Hongxin, ZHOU Suihua, and ZHANG Jiawei. A progressive bayesian filtering approach to magnetic dipole tracking[J]. Acta Automatica Sinica, 2017, 43(5): 822–834. doi: 10.16383/j.aas.2017.c160052
    张宏欣. 磁性目标跟踪的多模型自适应滤波方法[J]. 数字海洋与水下攻防, 2018, 1(2): 57–62.

    ZHANG Hongxin. Multiple-model adaptive filtering method for magnetic target tracking[J]. Digital Ocean &Underwater Warfare, 2018, 1(2): 57–62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (3637) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return