Advanced Search
Volume 42 Issue 5
Jun.  2020
Turn off MathJax
Article Contents
Wenming ZHANG, Zhenfei YAO, Yakun GAO, Haibin LI. A Deep Convolutional Network for Saliency Object Detection with Balanced Accuracy and High Efficiency[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1201-1208. doi: 10.11999/JEIT190229
Citation: Wenming ZHANG, Zhenfei YAO, Yakun GAO, Haibin LI. A Deep Convolutional Network for Saliency Object Detection with Balanced Accuracy and High Efficiency[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1201-1208. doi: 10.11999/JEIT190229

A Deep Convolutional Network for Saliency Object Detection with Balanced Accuracy and High Efficiency

doi: 10.11999/JEIT190229
Funds:  The Nature Science Foundation of Hebei Province (F2015203212, F2019203195)
  • Received Date: 2019-04-08
  • Rev Recd Date: 2019-08-30
  • Available Online: 2020-01-21
  • Publish Date: 2020-06-04
  • It is difficult for current salient object detection algorithms to reach a good balance performance between accuracy and efficiency. To solve this problem, a deep convolutional network for saliency object detection with balanced accuracy and high efficiency is produced. First, through replacing the traditional convolution with the decomposed convolution, the computational complexity is greatly reduced and the detection efficiency of the model is improved. Second, in order to make better use of the characteristics of different scales, sparse cross-layer connection structure and multi-scale fusion structure are adopted to improve the detection precision. A wide range of evaluations show that compared with the existing methods, the proposed algorithm achieves the leading performance in efficiency and accuracy.

  • loading
  • WANG Lijun, LU Huchuan, RUAN Xiang, et al. Deep networks for saliency detection via local estimation and global search[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3183–3192. doi: 10.1109/CVPR.2015.7298938.
    LI Guanbin and YU Yizhou. Visual saliency based on multiscale deep features[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5455–5463. doi: 10.1109/CVPR.2015.7299184.
    LEE G, TAI Y W, and KIM J. Deep saliency with encoded low level distance map and high level features[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 660–668. doi: 10.1109/CVPR.2016.78.
    LIU Nian and HAN Junwei. DHSNet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80.
    WANG Linzhao, WANG Lijun, LU Huchuan, et al. Saliency detection with recurrent fully convolutional networks[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 825–841. doi: 10.1007/978-3-319-46493-0_50.
    ZHANG Xinsheng, GAO Teng, and GAO Dongdong. A new deep spatial transformer convolutional neural network for image saliency detection[J]. Design Automation for Embedded Systems, 2018, 22(3): 243–256. doi: 10.1007/s10617-018-9209-0
    ZHANG Jing, ZHANG Tong, DAI Yuchao, et al. Deep unsupervised saliency detection: A multiple noisy labeling perspective[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9029–9038. doi: 10.1109/CVPR.2018.00941.
    CAO Feilong, LIU Yuehua, and WANG Dianhui. Efficient saliency detection using convolutional neural networks with feature selection[J]. Information Sciences, 2018, 456: 34–49. doi: 10.1016/j.ins.2018.05.006
    ZHU Dandan, DAI Lei, LUO Ye, et al. Multi-scale adversarial feature learning for saliency detection[J]. Symmetry, 2018, 10(10): 457–471. doi: 10.3390/sym10100457
    ZENG Yu, ZHUGE Yunzhi, LU Huchuan, et al. Multi-source weak supervision for saliency detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6067–6076.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 2014, arXiv: 1409.1556.
    ALVAREZ J and PETERSSON L. DecomposeMe: Simplifying convNets for end-to-end learning[J]. 2016, arXiv: 1606.05426v1.
    LIU Tie, YUAN Zejian, SUN Jian, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353–367. doi: 10.1109/TPAMI.2010.70
    YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1155–1162. doi: 10.1109/CVPR.2013.153.
    LI Yin, HOU Xiaodi, KOCH C, et al. The secrets of salient object segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 280–287. doi: 10.1109/CVPR.2014.43.
    MOVAHEDI V and ELDER J H. Design and perceptual validation of performance measures for salient object segmentation[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 49–56. doi: 10.1109/CVPRW.2010.5543739.
    LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58.
    LUO Zhiming, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6593–6601. doi: 10.1109/CVPR.2017.698.
    TU W C, HE Shengfeng, YANG Qingxiong, et al. Real-time salient object detection with a minimum spanning tree[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2334–2342. doi: 10.1109/CVPR.2016.256.
    LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2976–2983. doi: 10.1109/ICCV.2013.370.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (4075) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return