Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Lei YANG, Pucheng LI, Huijuan LI, Cheng FANG. Robust and Efficient Sparse-feature Enhancementfor Generalized SAR Imagery[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2826-2835. doi: 10.11999/JEIT190173
Citation: Lei YANG, Pucheng LI, Huijuan LI, Cheng FANG. Robust and Efficient Sparse-feature Enhancementfor Generalized SAR Imagery[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2826-2835. doi: 10.11999/JEIT190173

Robust and Efficient Sparse-feature Enhancementfor Generalized SAR Imagery

doi: 10.11999/JEIT190173
Funds:  The National Natural Science Foundation of China (61601470), The Natural Science Foundation of Tianjin, China (16JCYBJC41200), The Fundamental Research Funds for the Central Universities of Ministry of Education of China (3122018C005)
  • Received Date: 2019-03-22
  • Rev Recd Date: 2019-08-23
  • Available Online: 2019-09-12
  • Publish Date: 2019-12-01
  • For the problem of sparse feature enhancement in Synthetic Aperture Radar (SAR) imagery, conventional methods are difficult to achieve a preferable balance between accuracy and efficiency. In this paper, a robust and efficient SAR imaging algorithm based on Complex Alternating Direction Method of Multipliers(C-ADMM) is proposed for general SAR imaging feature enhancement within complex raw data domain. The problem is firstly imposed by an augmented Lagrange function, and the complex ${\ell _1}$-norm of the intended SAR image is jointly formulated within the C-ADMM framework. Then, the proximal mapping of the sparse feature is derived as a soft-thresholding operator. Further, an iterative processing procedure is designed according to Gaussian-Deidel principle, and the convergence of the proposed algorithm is analyzed. In the experiment, the performance of the proposed algorithm is firstly examined by the simulated data in terms of Phase Transition Diagram (PTD) under different under-sampling rate and degree of sparsity. Then, various raw SAR and Inverse SAR(ISAR) data, for both stationary ground scene and Ground Moving Target Imaging(CMTIm), are applied to further verifying the proposed C-ADMM, and comparisons with classical Convex(CVX) and Bayesian Compress Sensing(BCS) algorithms are performed, so that both the effectiveness and superiority of the C-ADMM algorithm can be verified.
  • loading
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    BARANIUK R G. Compressive sensing [Lecture Notes][J]. IEEE Signal Processing Magazine, 2007, 24(4): 118–121. doi: 10.1109/MSP.2007.4286571
    TELLO M T, LOPEZ-DEKKER P, AND MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(22): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    ÖNHON N Ö and CETIN M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075–2088. doi: 10.1109/TIP.2011.2179056
    YANG Lei, ZHAO Lifan, ZHOU Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1443–1455. doi: 10.1109/JSTARS.2016.2611005
    YANG Lei, ZHAO Lifan, BI Guoan, et al. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2254–2267. doi: 10.1109/TGRS.2015.2498158
    ZHAO Lifan, WANG Lu, BI Guoan, et al. An autofocus technique for high-resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392–6403. doi: 10.1109/TGRS.2013.2296497
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    MUTHUKRISHNAN S. Data streams: Algorithms and applications[J]. Foundations and Trends ® in Theoretical Computer Science, 2005, 1(2): 117–236. doi: 10.1561/0400000002
    BOYD S, PARIKH N, CHU E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
    MALEKI A, ANITORI L, YANG Zai, et al. Asymptotic analysis of complex LASSO via complex approximate message passing (CAMP)[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290–4308. doi: 10.1109/TIT.2013.2252232
    侯丽丽, 郑明洁, 宋红军, 等. 多通道高分辨率宽测绘带SAR系统杂波抑制技术研究[J]. 电子与信息学报, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659

    HOU Lili, ZHENG Mingjie, SONG Hongjun, et al. Research on clutter suppression for multichannel high-resolution wide-swath SAR System[J]. Journal of Electronics &Information Technology, 2016, 38(3): 635–642. doi: 10.11999/JEIT150659
    王力宝, 许稼, 向家彬, 等. 基于DPCA和多分辨分析的SAR微弱运动目标检测[J]. 电子与信息学报, 2007, 29(12): 2843–2847. doi: 10.3724/SP.J.1146.2006.00710

    WANG Libao, XU Jia, XIANG Jiabin, et al. SAR weak moving target detection based on DPCA and multi-resolution analysis[J]. Journal of Electronics &Information Technology, 2007, 29(12): 2843–2847. doi: 10.3724/SP.J.1146.2006.00710
    金艳, 段鹏婷, 姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013

    JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Electronic Industry Press, 2005.
    TIBSHIRANI R. Regression shrinkage and selection via the LASSO: A retrospective[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 2011, 73(3): 273–282. doi: 10.1111/J.1467-9868.2011.00771.X
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/JPROC.2010.2045630
    张增辉, 郁文贤. 稀疏微波SAR图像特征分析与目标检测研究[J]. 雷达学报, 2016, 5(1): 42–56. doi: 10.12000/JR15097

    ZHANG Zenghui and YU Wenxian. Feature understanding and target detection for sparse microwave synthetic aperture radar images[J]. Journal of Radars, 2016, 5(1): 42–56. doi: 10.12000/JR15097
    刘向阳, 杨君刚, 孟进, 等. 低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像[J]. 雷达学报, 2017, 6(3): 316–323. doi: 10.12000/JR17011

    LIU Xiangyang, YANG Jungang, MENG Jin, et al. Sparse three-dimensional imaging based on Hough transform for forward-looking array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316–323. doi: 10.12000/JR17011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (3334) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return