Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Guangkai LIU, Houde QUAN, Huixian SUN, Peizhang CUI, Kuo CHI, Shaolin YAO. Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2342-2349. doi: 10.11999/JEIT190157
Citation: Guangkai LIU, Houde QUAN, Huixian SUN, Peizhang CUI, Kuo CHI, Shaolin YAO. Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2342-2349. doi: 10.11999/JEIT190157

Stochastic Resonance Detection Method for the Dual-Sequence Frequency Hopping Signal under Extremely Low Signal-to-Noise Radio

doi: 10.11999/JEIT190157
Funds:  The Natural Science Foundation of Hebei Province (F2017506006)
  • Received Date: 2019-03-18
  • Rev Recd Date: 2019-05-27
  • Available Online: 2019-06-03
  • Publish Date: 2019-10-01
  • Considering the problem that the Dual-Sequence Frequency Hopping (DSFH) can not communicate at extremely low Signal-to-Noise Ratio (SNR), a Stochastic Resonance (SR) detection method is proposed. The SR takes full advantage of the physical characteristics of DSFH signal to improve the detection performance. Firstly, the SR is constructed by analyzing signals of transmission, reception and the Intermediate Frequency (IF). The scale transaction is used to adjust the IF signal to fit the SR. Secondly, the non-autonomous Fokker-Plank Equation (FPE) is transformed into an autonomous equation by introducing the decision time. Therefore, the analytical solution of the probability density function with the parameter of decision time is obtained. Finally, the detection probability, false alarm probability and Receiver Operating Characteristics (ROC) curve are obtained, when the criterion is the Maximum A Posterior probability (MAP). Simulation analysis results show three conclusions: (1) The SNR of DSFH signal can be as low as –18 dB, which uses the matched SR detection. (2) Method for combining DSFH with the matched SR is suitable to detect the signals with SNR of –18 ~–14 dB. (3) In the case of –14 dB SNR, the DFSH signal detection performance increases by 25.47%, when using SR. The proposed method effectiveness is proved with simulation results.
  • loading
  • FITZEK F H P. The medium is the message[C]. 2006 IEEE International Conference on Communications, Istanbul, Turkey, 2006: 5016–5021.
    ZHOU Xin, KYRITSI P, EGGERS P C F, et al. "The medium is the message": Secure communication via waveform coding in MIMO systems[C]. The 65th Vehicular Technology Conference-VTC2007-Spring, Dublin, Ireland, 2007: 491–495.
    QUAN Houde, ZHAO Huan, and CUI Peizhang. Anti-jamming frequency hopping system using multiple hopping patterns[J]. Wireless Personal Communications, 2015, 81(3): 1159–1176. doi: 10.1007/s11277-014-2177-1
    赵寰, 全厚德, 崔佩璋. 抗跟踪干扰的多序列跳频无线通信系统[J]. 系统工程与电子技术, 2015, 37(3): 671–678. doi: 10.3969/j.issn.1001-506X.2015.03.31

    ZHAO Huan, QUAN Houde, and CUI Peizhang. Follower-jamming resistible multi-sequence frequency hopping wireless communication[J]. Systems Engineering and Electronics, 2015, 37(3): 671–678. doi: 10.3969/j.issn.1001-506X.2015.03.31
    BENZI R, SUTERA A, and VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453–L457. doi: 10.1088/0305-4470/14/11/006
    张刚, 宋莹, 张天骐. Levy噪声驱动下指数型单稳系统的随机共振特性分析[J]. 电子与信息学报, 2017, 39(4): 893–900. doi: 10.11999/JEIT160579

    ZHANG Gang, SONG Ying, and ZHANG Tianqi. Characteristic analysis of exponential type monostable stochastic resonance under levy noise[J]. Journal of Electronics &Information Technology, 2017, 39(4): 893–900. doi: 10.11999/JEIT160579
    王珊, 王辅忠. 基于自适应随机共振理论的太赫兹雷达信号检测方法[J]. 物理学报, 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367

    WANG Shan and WANG Fuzhong. Adaptive stochastic resonance system in Terahertz radar signal detection[J]. Acta Physica Sinica, 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367
    KRAUSS P, METZNER C, SCHILLING A, et al. Adaptive stochastic resonance for unknown and variable input signals[J]. Scientific Reports, 2017, 7(1): 2450. doi: 10.1038/s41598-017-02644-w
    CHEN Hao, VARSHNEY L R, and VARSHNEY P K. Noise-enhanced information systems[J]. Proceedings of the IEEE, 2014, 102(10): 1607–1621. doi: 10.1109/JPROC.2014.2341554
    CHEN Hao, VARSHNEY P K, KAY S M, et al. Theory of the stochastic resonance effect in signal detection: Part I—Fixed detectors[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3172–3184. doi: 10.1109/TSP.2007.893757
    CHEN Hao and VARSHNEY P K. Theory of the stochastic resonance effect in signal detection—Part II: Variable detectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 5031–5041. doi: 10.1109/TSP.2008.928509
    ZHANG Gang, ZHANG Yijun, ZHANG Tianqi, et al. Stochastic resonance in second-order underdamped system with exponential Bistable potential for bearing fault diagnosis[J]. IEEE Access, 2018, 6: 42431–42444. doi: 10.1109/ACCESS.2018.2856620
    李海霞, 任勇峰, 杨玉华, 等. 跳频信号的迭代随机共振解调算法[J]. 系统仿真学报, 2018, 30(1): 341–347. doi: 10.16182/j.issn1004731x.joss.201801045

    LI Haixia, REN Yongfeng, YANG Yuhua, et al. Iterative stochastic resonance demodulation algorithm of frequency-hopping signal[J]. Journal of System Simulation, 2018, 30(1): 341–347. doi: 10.16182/j.issn1004731x.joss.201801045
    WANG Jun, REN Xin, ZHANG Shaowen, et al. Adaptive bistable stochastic resonance aided spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 4014–4024. doi: 10.1109/TWC.2014.2317779
    胡岗. 随机力与非线性系统[M]. 上海: 上海科技教育出版社, 1994: 222–232.

    HU Gang. Stochastic Forces and Nonlinear Systems[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1994: 222–232.
    KANG Yanmei. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems[J]. Physics Letters A, 2016, 380(39): 3160–3166. doi: 10.1016/j.physleta.2016.07.049
    IKOTA R. Approximation to a Fokker-Planck equation for the Brownian motor[J]. Physical Review E, 2018, 97(6): 062111. doi: 10.1103/PhysRevE.97.062111.
    胡茑庆. 随机共振微弱特征信号检测理论与方法[M]. 北京: 国防工业出版社, 2012: 85–86.

    HU Niaoqing. Theory and Method of Detecting Weak Characteristic Signals of Stochastic Resonance[M]. Beijing: National Defend Industry Press, 2012: 85–86.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3370) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return