Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Han YU, Penglang SHUI, Sainan SHI, Chunjiao YANG. Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2836-2843. doi: 10.11999/JEIT190148
Citation: Han YU, Penglang SHUI, Sainan SHI, Chunjiao YANG. Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2836-2843. doi: 10.11999/JEIT190148

Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model

doi: 10.11999/JEIT190148
Funds:  The National Natural Science Foundation of China (61871303)
  • Received Date: 2019-03-14
  • Rev Recd Date: 2019-08-12
  • Available Online: 2019-09-03
  • Publish Date: 2019-12-01
  • The generalized Pareto distributed sea clutter model, known as one of the compound-Gaussian models, is able to describe heavy-tailed characteristic of sea clutter under high-resolution and low grazing angle detection scene efficiently, and the accuracy of parameter estimation under this condition heavily impacts radar’s detection property. In this paper, Combined BiPercentile (CBiP) estimator is proposed to estimate the parameters. The CBiP estimator is realized based on the explicit roots of low-order polynomial equations and full application of sample information in returns, which provides a highly-accurate parameter estimation process. Besides, the CBiP estimator can maintain the robustness of estimation performance when outliers with extremely large power are existing in samples, while other estimators, including moment-based and Maximum Likelihood (ML) estimators, degrade extremely in estimation accuracy. Without outliers in samples, the combined bipercentile estimator shows similar accuracy with the ML estimator. With outliers, the combined percentile estimator is the only method with robustness in performance, compared with other estimators aforementioned. Moreover, the ability of the new estimator is verified by measured clutter data.
  • loading
  • ANGELLIAUME S, ROSENBERG L, and RITCHIE M. Modeling the amplitude distribution of radar sea clutter[J]. Remote Sensing, 2019, 11(3): 319. doi: 10.3390/rs11030319
    WARD K, TOUGH R J A, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. 2nd ed. United Kingdom: Institute of Engineering Technology, 2013: 101-134.
    BALLERI A, NEHORAI A, and WANG Jian. Maximum likelihood estimation for compound-Gaussian clutter with inverse Gamma texture[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 775–779. doi: 10.1109/TAES.2007.4285370
    尹志盈, 张玉石. 雷达海杂波统计特性建模研究[J]. 装备环境工程, 2017, 14(7): 29–34. doi: 10.7643/issn.1672-9242.2017.07.006

    YIN Zhiying and ZHANG Yushi. Radar sea clutter modeling of statistical characteristic[J]. Equipment Environmental Engineering, 2017, 14(7): 29–34. doi: 10.7643/issn.1672-9242.2017.07.006
    SHUI Penglang, SHI Lixiang, YU Han, et al. Iterative maximum likelihood and outlier-robust bipercentile estimation of parameters of compound-Gaussian clutter with inverse Gaussian texture[J]. IEEE Signal Processing Letters, 2016, 23(11): 1572–1576. doi: 10.1109/LSP.2016.2605129
    于涵, 水鹏朗, 施赛楠, 等. 复合高斯海杂波模型下最优相干检测进展[J]. 科技导报, 2017, 35(20): 109–118. doi: 10.3981/j.issn.1000-7857.2017.20.012

    YU Han, SHUI Penglang, SHI Sainan, et al. Development of optimum coherent detection under compound- Gaussian clutter model[J]. Science &Technology Review, 2017, 35(20): 109–118. doi: 10.3981/j.issn.1000-7857.2017.20.012
    赵文静, 刘畅, 刘文龙, 等. K分布海杂波背景下基于最大特征值的雷达信号检测算法[J]. 电子与信息学报, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092

    ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue based radar signal detection method for K distribution sea clutter environment[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2235–2241. doi: 10.11999/JEIT171092
    丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    SHUI Penglang and LIU Ming. Subband adaptive GLRT-LTD for weak moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 423–437. doi: 10.1109/TAES.2015.140783
    SHUI Penglang, YU Han, SHI Lixiang, et al. Explicit bipercentile parameter estimation of compound-Gaussian clutter with inverse Gamma distributed texture[J]. IET Radar, Sonar & Navigation, 2018, 12(2): 202–208. doi: 10.1049/iet-rsn.2017.0174
    YU Han, SHUI Penglang, ZENG Weiliang, et al. Multiscan recursive bayesian method for parameter estimation of spatially-varying sea clutter models[C]. 2018 International Conference on Radar, Brisbane, Australia, 2018: 1–8. doi: 10.1109/RADAR.2018.8557270.
    夏晓云, 黎鑫, 张玉石, 等. 基于相位的岸基雷达地海杂波分割方法[J]. 系统工程与电子技术, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10

    XIA Xiaoyun, LI Xin, ZHANG Yushi, et al. Sea-land clutter segmentation method of shore-based radar based on phase information[J]. Systems Engineering and Electronics, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10
    BALAKRISHNAN N and COHEN A C. Order Statistics and Inference[M]. Boston: Academic Press, 1991: 7–17.
    WARD K D, BAKER C J, and WATTS S. Maritime surveillance radar. I. Radar scattering from the ocean surface[J]. IEE Proceedings F-Radar and Signal Processing, 1990, 137(2): 51–62. doi: 10.1049/ip-f-2.1990.0009
    孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813

    SUN Na, LIU Jiwen, and XIAO Dongliang. SL0 reconstruction algorithm for compressive sensing based on BFGS quasi newton method[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2408–2414. doi: 10.11999/JEIT170813
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1887) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return