Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Lin LI, Lin WANG, Hongxia HAN, Hongbing JI, Li JIANG. Research on the Adaptive Synchrosqueezing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146
Citation: Lin LI, Lin WANG, Hongxia HAN, Hongbing JI, Li JIANG. Research on the Adaptive Synchrosqueezing Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(2): 438-444. doi: 10.11999/JEIT190146

Research on the Adaptive Synchrosqueezing Algorithm

doi: 10.11999/JEIT190146
Funds:  The National Natural Science Foundation of China (61803294)
  • Received Date: 2019-03-13
  • Rev Recd Date: 2019-05-27
  • Available Online: 2019-08-23
  • Publish Date: 2020-02-19
  • The improvement of time-frequency resolution plays a crucial role in the analysis and reconstruction of multi-component non-stationary signals. For traditional time-frequency analysis methods with fixed window, the time-frequency concentration is low and hardly to distinguish the multi-component signals with fast-varying frequencies. In this paper, by adopting the local information of the signal, an adaptive synchrosqueezing transform is proposed for the signals with fast-varying frequencies. The proposed method is with high time-frequency resolution, superior to existing synchrosqueezing methods, and particularly suitable for multi-component signals with close and fast-varying frequencies. Meanwhile, by using the separability condition, the adaptive window parameters are estimated by local Rényi entropy. Finally, experiments on synthetic and real signals demonstrate the correctness of the proposed method, which is suitable to analyze and recover complex non-stationary signals.

  • loading
  • 张贤达, 保铮. 非平稳信号分析与处理[M]. 北京: 国防工业出版社, 1998: 1–3.

    ZHANG Xianda and BAO Zheng. Non-stationary Nonlinear Signal Analysis and Processing[M]. Beijing: National Defense Industry Press, 1998: 1–3.
    COHEN L. Time-frequency Analysis[M]. Englewood Cliffs: Prentice Hall, 1995: 44–195.
    FLANDRIN P. Time-Frequency/Time-Scale Analysis[M]. Cambridge: Academic Press, 1999: 1–386.
    DAUBECHIES I, LU Jianfeng, and WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243–261. doi: 10.1016/j.acha.2010.08.002
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    AUGER F and FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068–1089. doi: 10.1109/78.382394
    OBERLIN T, MEIGNEN S, and PERRIER V. The Fourier-based synchrosqueezing transform[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 315–319. doi: 10.1109/ICASSP.2014.6853609.
    PHAM D H and MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis—With an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing, 2017, 65(12): 3168–3178. doi: 10.1109/TSP.2017.2686355
    OBERLIN T and MEIGNEN S. The second-order wavelet synchrosqueezing transform[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3994–3998. doi: 10.1109/ICASSP.2017.7952906.
    WANG Shibin, CHEN Xuefeng, SELESNICK I W, et al. Matching synchrosqueezing transform: A useful tool for characterizing signals with fast varying instantaneous frequency and application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2018, 100: 242–288. doi: 10.1016/j.ymssp.2017.07.009
    HERRY C L, FRASCH M, SEELY A J, et al. Heart beat classification from single-lead ECG using the synchrosqueezing transform[J]. Physiological Measurement, 2017, 38(2): 171–187. doi: 10.1088/1361-6579/aa5070
    HE Kuanfang, LI Qi, and YANG Qing. Characteristic analysis of welding crack acoustic emission signals using synchrosqueezed wavelet transform[J]. Journal of Testing and Evaluation, 2018, 46(6): 2679–2691. doi: 10.1520/JTE20170218
    LI Lin, CAI Haiyan, JIANG Qingtang, et al. An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 791–809. doi: 10.1016/j.ymssp.2018.11.037
    STANKOVIĆ L. A measure of some time-frequency distributions concentration[J]. Signal Processing, 2001, 81(3): 621–631. doi: 10.1016/S0165-1684(00)00236-X
    FUSCUS E. Digitized 2.5 microsecond echolocation pulse emitted by the Large Brown Bat[EB/OL]. https://www.ece. rice.edu/dsp/software/bat.shtml, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (3302) PDF downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return