Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Han Tao, Zhu Yue-Fei. Adaptive Spatial Steganography Based on Cannys Edge Detection[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1266-1270. doi: 10.11999/JEIT141121
Citation: Xiangwei MENG. Performance of Rank Sum Nonparametric Detector at Clutter Edge[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2859-2864. doi: 10.11999/JEIT190136

Performance of Rank Sum Nonparametric Detector at Clutter Edge

doi: 10.11999/JEIT190136
Funds:  The National Natural Science Foundation of China (61179016)
  • Received Date: 2019-03-11
  • Rev Recd Date: 2019-06-12
  • Available Online: 2019-08-23
  • Publish Date: 2019-12-01
  • The performance of a Constant False Alarm Rate (CFAR) detector is often evaluated in three typical backgrounds - homogeneous environment, multiple targets situation and clutter edges described by Prof. Rohling. However, there is a lack of the analytic expression of the false alarm rate for the Rank Sum (RS) nonparametric detector at clutter boundaries, and lack of a comparison of the ability for the RS detector to control the rise of the false alarm rate at clutter edges to that of the conventional parametric CFAR schemes; which is incomplete and imperfect for the detection theory of nonparametric detectors. The analytic expression of the false alarm rate Pfa for the RS nonparametric detector at clutter edges is given in this paper, and the ability of the RS nonparametric detector to control the rise of the false alarm rate at clutter edges is compared to that of the Cell Averaing (CA) CFAR, the Greatest Of (GO) CFAR and the Ordered Statistic (OS) CFAR with incoherent integration. When both of the heavy and the weak clutters follow a Rayleigh distribution, it is shown that the rise of the false alarm rate for the RS detector at clutter edges lies between that of the CA-CFAR and that of the OS-CFAR with incoherent integration. If a non-Gaussian distributed clutter with a long tail moves into the reference window, the rise of the CA-CFAR, the GO-CFAR and the OS-CFAR with incoherent integration reaches a peak of more than 3 orders of magnitude, and can not return to the original pre-designed Pfa. However, the RS nonparametric detector exhibits its inherent advantage in such situation, it can maintain a constant false alarm rate even the distribution form of clutter becomes a different one.
  • WEINBERG G V and TRAN C. A Weber-Haykin detector in correlated Pareto distributed clutter[J]. Digital Signal Processing, 2019, 84: 107–113. doi: 10.1016/j.dsp.2018.10.007
    WEINBERG G V, BATEMAN L, and HAYDEN P. Development of non-coherent CFAR detection processes in Weibull background[J]. Digital Signal Processing, 2018, 75: 96–106. doi: 10.1016/j.dsp.2018.01.002
    ZHOU Wei, XIE Junhao, LI Gaopeng, et al. Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1520–1535. doi: 10.1109/TAES.2017.2671798
    MENG X W. Performance analysis of OS-CFAR with binary integration for Weibull background[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1357–1366. doi: 10.1109/TAES.2013.6494420
    BAADECHE M and SOLTANI F. Performance analysis of mean level constant false alarm rate detectors with binary integration in Weibull background[J]. IET Radar, Sonar & Navigation, 2015, 9(3): 233–240. doi: 10.1049/iet-rsn.2014.0053
    WEINBERG G V and KYPRIANOU R. Optimised binary integration with order statistic CFAR in Pareto distributed clutter[J]. Digital Signal Processing, 2015, 42: 50–60. doi: 10.1016/j.dsp.2015.04.002
    WICKS M C and BALDYGO W J. Expert system CFAR: Algorithm development, experimental demonstration, and transition to airborne radar systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(9): 40–47. doi: 10.1109/MAES.2017.160243
    ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
    GANDHI P P and KASSAM S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427–445. doi: 10.1109/7.7185
    孟祥伟. 非参数秩和检测器的性能分析[J]. 电子与信息学报, 2013, 35(8): 2029–2032.

    MENG Xiangwei. Performance analysis of rank sum nonparametric detector[J]. Journal of Electronics &Information Technology, 2013, 35(8): 2029–2032.
  • Cited by

    Periodical cited type(10)

    1. 任志敏,曾文军,张良. 一种基于图片边缘轮廓的信息隐藏方法. 山西电子技术. 2022(04): 5-8 .
    2. 王海龙,柳林,纪文璐. 改进插值及择优阈值Canny算法的边缘检测. 计算机仿真. 2020(05): 394-398 .
    3. 吴翰,江巨浪. 基于边缘检测的高斯噪声滤波算法. 安庆师范大学学报(自然科学版). 2018(01): 38-40+50 .
    4. 刘应红,孙树亮. 基于汉明码和Logistic-正弦映射的图像隐写. 郑州大学学报(理学版). 2018(03): 22-26 .
    5. 宋晓峰,林少锋,韩鹍,寇万里. 图像自适应隐写和隐写分析技术进展. 电子信息对抗技术. 2017(01): 70-76 .
    6. 汤光明,边媛,韦大伟,高瞻瞻,朱垚臻. 一种动态更新失真代价的自适应±k隐写算法. 电子与信息学报. 2017(01): 58-65 . 本站查看
    7. 王丽娜,谭选择,徐一波,翟黎明. 基于纹理复杂度的JPEG图像自适应隐写. 武汉大学学报(理学版). 2017(05): 421-426 .
    8. 谢印庆,姜莉,王鲁云,黄超,刘婷. 一种快速车流量检测算法. 哈尔滨理工大学学报. 2016(04): 19-24 .
    9. 王昂. 海上舰艇作战虚拟视景图像系统仿真研究. 计算机仿真. 2016(04): 419-423 .
    10. 李宁波,潘峰,李军,李秀广. 基于S-UNIWARD的图像自适应空域隐写术. 计算机工程与设计. 2016(10): 2627-2631 .

    Other cited types(12)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (2287) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return