Advanced Search
Volume 42 Issue 4
Jun.  2020
Turn off MathJax
Article Contents
Xianlun TANG, Wei LI, Weichang MA, Desong KONG, Yiwei MA. Conditional Empirical Mode Decomposition and Serial Parallel CNN for ElectroEncephaloGram Signal Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1041-1048. doi: 10.11999/JEIT190124
Citation: Xianlun TANG, Wei LI, Weichang MA, Desong KONG, Yiwei MA. Conditional Empirical Mode Decomposition and Serial Parallel CNN for ElectroEncephaloGram Signal Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1041-1048. doi: 10.11999/JEIT190124

Conditional Empirical Mode Decomposition and Serial Parallel CNN for ElectroEncephaloGram Signal Recognition

doi: 10.11999/JEIT190124
Funds:  The National Natural Science Foundation of China (61673079, 61703068), The Basic Research and Frontier Exploration Project of Chongqing (cstc2018jcyjAX0160)
  • Received Date: 2019-03-01
  • Rev Recd Date: 2019-11-22
  • Available Online: 2019-12-14
  • Publish Date: 2020-06-04
  • For the non-linear and non-stationary characteristics of motor imagery ElectroEncephaloGram (EEG) signals, an EEG signal recognition method based on Conditional Empirical Mode Decomposition (CEMD) and Serial Parallel Convolutional Neural Network (SPCNN) is proposed. In the CEMD process, the correlation coefficient between the Intrinsic Mode Functions (IMFs) and the original signal is used as the first condition to select IMFs. Based on this, the relative energy occupancy rates between the IMFs are proposed as the second condition to select IMFs. Further, to consider the characteristics between the EEG signal channels and highlight the features in each EEG signal channel, a SPCNN model is proposed to classify the processed EEG signals. The experimental results show that the average recognition rate reaches 94.58% on the dataset collected by ourselves. And the average recognition rate reaches 82.13% on the BCI competition IV 2b dataset, which is 3.85% higher than the average recognition rate of convolutional neural network. Finally, the online control experiments are carried out on the designed intelligent wheelchair platform, which proves the effectiveness of the proposed algorithm for EEG signals recognition.

  • loading
  • RAMADAN R A and VASILAKOS A V. Brain computer interface: Control signals review[J]. Neurocomputing, 2017, 223: 26–44. doi: 10.1016/j.neucom.2016.10.024
    佘青山, 陈希豪, 高发荣, 等. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851

    SHE Qingshan, CHEN Xihao, GAO Farong, et al. Feature extraction of electroencephalography based on LASSO-Granger causality between brain region of interest[J]. Journal of Electronics &Information Technology, 2016, 38(5): 1266–1270. doi: 10.11999/JEIT150851
    YU Tianyou, XIAO Jun, WANG Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(7): 1706–1717. doi: 10.1109/TBME.2015.2402283
    KAUFMANN T, HERWEG A, and KÜBLER A. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11: No.7. doi: 10.1186/1743-0003-11-7
    WANG Haofei, DONG Xujiong, CHEN Zhaokang, et al. Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task[C]. The 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015: 1476–1479. doi: 10.1109/EMBC.2015.7318649.
    陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209

    CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209
    HSU W Y. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features[J]. Journal of Neuroscience Methods, 2010, 189(2): 295–302. doi: 10.1016/j.jneumeth.2010.03.030
    WU Shanglin, WU Chunwei, PAL N R, et al. Common spatial pattern and linear discriminant analysis for motor imagery classification[C]. 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain, Singapore, 2013: 146–151. doi: 10.1109/CCMB.2013.6609178.
    ZHANG Yu, WANG Yu, ZHOU Guoxu, et al. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces[J]. Expert Systems with Applications, 2018, 96: 302–310. doi: 10.1016/j.eswa.2017.12.015
    KEVRIC J and SUBASI A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system[J]. Biomedical Signal Processing and Control, 2017, 31: 398–406. doi: 10.1016/j.bspc.2016.09.007
    PARK C, LOONEY D, REHMAN N U, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 10–22. doi: 10.1109/TNSRE.2012.2229296
    DOSE H, MØLLER J S, IVERSEN H K, et al. An end-to-end deep learning approach to MI-EEG signal classification for BCIs[J]. Expert Systems with Applications, 2018, 114: 532–542. doi: 10.1016/j.eswa.2018.08.031
    ZHANG Jin, YAN Chungang, and GONG Xiaoliang. Deep convolutional neural network for decoding motor imagery based brain computer interface[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242581.
    AN Xiu, KUANG Deping, GUO Xiaojiao, et al. A deep learning method for classification of EEG data based on motor imagery[C]. The 10th International Conference on Intelligent Computing, Taiyuan, China, 2014: 203–210. doi: 10.1007/978-3-319-09330-7_25.
    LI Shufang, ZHOU Weidong, YUAN Qi, et al. Feature extraction and recognition of ictal EEG using EMD and SVM[J]. Computers in Biology and Medicine, 2013, 43(7): 807–816. doi: 10.1016/j.compbiomed.2013.04.002
    TARAN S, BAJAJ V, SHARMA D, et al. Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications[J]. Measurement, 2018, 116: 68–76. doi: 10.1016/j.measurement.2017.10.067
    MU Yashuang, LIU Xiaodong, and WANG Lidong. A Pearson’s correlation coefficient based decision tree and its parallel implementation[J]. Information Sciences, 2018, 435: 40–58. doi: 10.1016/j.ins.2017.12.059
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    SAKHAVI S, GUAN Cuntai, and YAN Shuicheng. Learning temporal information for brain-computer interface using convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5619–5629. doi: 10.1109/TNNLS.2018.2789927
    SUN Shiliang and ZHOU Jin. A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces[C]. 2014 International Joint Conference on Neural Networks, Beijing, China, 2014: 1746–1753. doi: 10.1109/IJCNN.2014.6889525.
    LU Na, LI Tengfei, REN Xiaodong, et al. A deep learning scheme for motor imagery classification based on restricted Boltzmann machines[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(6): 566–576. doi: 10.1109/TNSRE.2016.2601240
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2526) PDF downloads(119) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return