Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Jin WANG, Ke WANG, Zijian MIN, Kaiwei SUN, Xin DENG. Transfer Weight Based Conditional Adversarial Domain Adaptation[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2729-2735. doi: 10.11999/JEIT190115
Citation: Jin WANG, Ke WANG, Zijian MIN, Kaiwei SUN, Xin DENG. Transfer Weight Based Conditional Adversarial Domain Adaptation[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2729-2735. doi: 10.11999/JEIT190115

Transfer Weight Based Conditional Adversarial Domain Adaptation

doi: 10.11999/JEIT190115
Funds:  The National Nature Science Foundation of China(61806033), The National Social Science Foundation of China(18XGL013)
  • Received Date: 2019-02-27
  • Rev Recd Date: 2019-06-11
  • Available Online: 2019-06-24
  • Publish Date: 2019-11-01
  • Considering the failure of the Conditional adversarial Domain AdaptatioN(CDAN) to fully utilize the sample transferability, which still struggle with some hard-to-transfer source samples disturbed the distribution of the target domain samples, a Transfer Weight based Conditional adversarial Domain AdaptatioN(TW-CDAN) is proposed. Firstly, the discriminant results in the domain discriminant model as the main factor are employed to measure the transfer performance. Then the weight is applied to class loss and minimum entropy loss. It is for eliminating the influence of hard-to-transfer samples of the model. Finally, experiments are carried out using the six domain adaptation tasks of the Office-31 dataset and the 12 domain adaptation tasks of the Office-Home dataset. The proposed method improves the 14 domain adaptation tasks and increases the average accuracy by 1.4% and 3.1% respectively.
  • loading
  • YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3320-3328.
    PAN S J and YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345–1359. doi: 10.1109/TKDE.2009.191
    GEBRU T, HOFFMAN J, LI Feifei, et al. Fine-grained recognition in the wild: A multi-task domain adaptation approach[C]. Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1358–1367.
    GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. Proceedings of the 28th International Conference on Machine Learning, Bellevue, USA, 2011: 513–520.
    WANG Mei and DENG Weihong. Deep visual domain adaptation: A survey[J]. Neurocomputing, 2018, 312: 135–153. doi: 10.1016/j.neucom.2018.05.083
    GRETTON A, BORGWARDT K, RASCH M, et al. A kernel method for the two-sample-problem[C]. Proceedings of the 19th Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 513–520.
    LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015: 97–105.
    LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep transfer learning with joint adaptation networks[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 2208–2217.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2962–2971.
    MIRZA M and OSINDERO S. Conditional generative adversarial nets[EB/OL]. https://arxiv.org/abs/1411.1784, 2014.
    LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. Proceedings of the 32nd Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657.
    GRANDVALET Y and BENGIO Y. Semi-supervised learning by entropy minimization[C]. Proceedings of the 17th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2004: 529–536.
    SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]. Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 2010: 213–226.
    VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5385–5394.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Unsupervised domain adaptation with residual transfer networks[C]. Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 136–144.
    SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: Aligning domains using generative adversarial networks[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8503–8512.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (3710) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return