Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Miao LIAO, Yang LI, Yuqian ZHAO, Yizhi LIU. A New Method for Image Superpixel Segmentation[J]. Journal of Electronics & Information Technology, 2020, 42(2): 364-370. doi: 10.11999/JEIT190111
Citation: Miao LIAO, Yang LI, Yuqian ZHAO, Yizhi LIU. A New Method for Image Superpixel Segmentation[J]. Journal of Electronics & Information Technology, 2020, 42(2): 364-370. doi: 10.11999/JEIT190111

A New Method for Image Superpixel Segmentation

doi: 10.11999/JEIT190111
Funds:  The National Natural Science Foundation of China (61702179, 61772555), The Hunan Provincial Natural Science Foundation of China (2017JJ3091), The Postdoctoral Science Foundation Funded Project of China (2018M632994), The Scientific Research Fund of Hunan Provincial Education Department (17C0643)
  • Received Date: 2019-02-26
  • Rev Recd Date: 2019-09-03
  • Available Online: 2019-09-20
  • Publish Date: 2020-02-19
  • Considering the problem that the existing superpixel methods are usually unable to set an appropriate number of generated superpixels automatically and unable to adhere to image boundaries effectively, a new superpixel method is proposed in this paper, which utilizes local information to perform multi-level simple linear iterative clustering to generate superpixels. First, original image is initially segmented by Simple Liner Iterative Clustering based on Local Information (LI-SLIC). Then, each superpixel is segmented iteratively until its color standard deviation is lower than a predefined threshold. Finally, the over-segmented superpixels are merged based on the color differences between adjacent superpixels. Experiments on Berkeley, Pascal VOC and 3Dircadb databases, as well as comparison with other methods indicate that the proposed method can adhere to image boundaries more accurately, and can prevent over- and under- segmentations more effectively.

  • loading
  • WANG Murong, LIU Xiabi, GAO Yixuan, et al. Superpixel segmentation: A benchmark[J]. Signal Processing: Image Communication, 2017, 56: 28–39. doi: 10.1016/j.image.2017.04.007
    ZHOU Xianen, WANG Yaonan, ZHU Qing, et al. SSG: Superpixel segmentation and GrabCut-based salient object segmentation[J]. The Visual Computer, 2019, 35(3): 385–398. doi: 10.1007/s00371-018-1471-4
    SHAO Hong, YU Tianshu, XU Mengjia, et al. Image region duplication detection based on circular window expansion and phase correlation[J]. Forensic Science International, 2012, 222(1/3): 71–82.
    TIAN Zhiqiang, LIU Lizhi, ZHANG Zhenfeng, et al. Superpixel-based segmentation for 3D prostate MR images[J]. IEEE Transactions on Medical Imaging, 2016, 35(3): 791–801. doi: 10.1109/TMI.2015.2496296
    WANG Jun, LIU Weibin, XING Weiwei, et al. Visual object tracking with multi-scale superpixels and color-feature guided kernelized correlation filters[J]. Signal Processing: Image Communication, 2018, 63: 44–62. doi: 10.1016/j.image.2018.01.005
    LI Zhengqin and CHEN Jiansheng. Superpixel segmentation using linear spectral clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1356–1363.
    SHI Jianbo and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888–905. doi: 10.1109/34.868688
    GIRAUD R, TA V T, and PAPADAKIS N. Robust superpixels using color and contour features along linear path[J]. Computer Vision and Image Understanding, 2018, 170: 1–13. doi: 10.1016/j.cviu.2018.01.006
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2281. doi: 10.1109/TPAMI.2012.120
    ACHANTA R and SÜSSTRUNK S. Superpixels and polygons using simple non-iterative clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4895–4904.
    VASQUEZ D and SCHARCANSKI J. An iterative approach for obtaining multi-scale superpixels based on stochastic graph contraction operations[J]. Expert Systems with Applications, 2018, 102: 57–69. doi: 10.1016/j.eswa.2018.02.027
    CONZE P H, NOBLET V, ROUSSEAU F, et al. Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 223–233. doi: 10.1007/s11548-016-1493-1
    MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423.
    EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98–136. doi: 10.1007/s11263-014-0733-5
    SOLER L, HOSTETTLER A, AGNUS V, et al. 3D image reconstruction for comparison of algorithm database: A patient-specific anatomical and medical image database[EB/OL]. http://www-sop.inria.fr/geometrica/events/wam/abstract-ircad.pdf.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (4817) PDF downloads(209) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return