Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Yu WANG, Weidong YU, Xiuqing LIU. An Improved Four-component Decomposition Method Based on the Characteristic of Polarization and the Optimal Parameters of PolInSAR[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2881-2888. doi: 10.11999/JEIT190108
Citation: Yu WANG, Weidong YU, Xiuqing LIU. An Improved Four-component Decomposition Method Based on the Characteristic of Polarization and the Optimal Parameters of PolInSAR[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2881-2888. doi: 10.11999/JEIT190108

An Improved Four-component Decomposition Method Based on the Characteristic of Polarization and the Optimal Parameters of PolInSAR

doi: 10.11999/JEIT190108
  • Received Date: 2019-02-25
  • Rev Recd Date: 2019-04-23
  • Available Online: 2019-04-29
  • Publish Date: 2019-12-01
  • The backscattering of the radar targets is sensitive to the relative geometry between orientations of the targets and the radar line of sight. When the orientations of the same target are different from the radar line of sight, the scattering characteristics are quite different. Targets such as inclined ground and inclined buildings may reverse the polarization base of the backscattered echo, which causes the cross-polarization component to be too high and the volume scattering component of the image is overestimated. In this paper, a polarimetric interferometric decomposition method based on polarimetric parameters ($ H/{\alpha} $) and Polarimetric Interferometric Similarity Parameters (PISP) is proposed to solve the overestimation problem. The method makes full use of the scattering diversity of the scatterer in the radar line of sight. The cross-polarization components generated by targets such as inclined grounds and inclined buildings with different orientations are better adapted to obtain better decomposition results. Finally, the effectiveness of the proposed method in polarimetric interferometric decomposition is verified by the airborne C-band PolInSAR data obtained by the Institute of Electronics, Chinese Academy of Sciences. The experimental results show that the proposed improved algorithm can distinguish the scattering characteristics of terrain types effectively and correctly.
  • loading
  • CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    SALEHI M, MAGHSOUDI Y, and MOHAMMADZADEH A. Assessment of the potential of H/A/Alpha decomposition for polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2440–2451. doi: 10.1109/TGRS.2017.2780195
    YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699–1706. doi: 10.1109/TGRS.2005.852084
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    QUAN Sinong, XIANG Deliang, XIONG Boli, et al. A hierarchical extension of general four-component scattering power decomposition[J]. Remote Sensing, 2017, 9(8): 856. doi: 10.3390/rs9080856
    SUN Xiang, SONG Hongjun, WANG R, et al. High-resolution polarimetric SAR image decomposition of urban areas based on a POA correction method[J]. Remote Sensing Letters, 2018, 9(4): 363–372. doi: 10.1080/2150704X.2017.1418989
    KUMAR A, PANIGRAHI R K, and DAS A. Three-component decomposition technique for hybrid-pol SAR data[J]. IET Radar, Sonar & Navigation, 2016, 10(9): 1569–1574. doi: 10.1049/iet-rsn.2015.0298
    XIANG Deliang, WANG Wei, TANG Tao, et al. Multiple-component polarimetric decomposition with new volume scattering models for PolSAR urban areas[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 410–419. doi: 10.1049/iet-rsn.2016.0105
    CLOUDE S R and PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. doi: 10.1109/36.718859
    CHEN Siwei, WANG Xuesong, LI Yongzhen, et al. Adaptive model-based polarimetric decomposition using PolInSAR coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1705–1718. doi: 10.1109/TGRS.2013.2253780
    CHEN Siwei, OHKI M, SHIMADA M, et al. Deorientation effect investigation for model-based decomposition over oriented built-up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 273–277. doi: 10.1109/LGRS.2012.2203577
    CHEN Siwei, WANG Xuesong, and SATO M. Uniform polarimetric matrix rotation theory and its applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4756–4770. doi: 10.1109/TGRS.2013.2284359
    陈思伟, 李永祯, 王雪松, 等. 极化SAR目标散射旋转域解译理论与应用[J]. 雷达学报, 2017, 6(5): 442–455. doi: 10.12000/JR17033

    CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Polarimetric SAR target scattering interpretation in rotation domain: Theory and application[J]. Journal of Radars, 2017, 6(5): 442–455. doi: 10.12000/JR17033
    MAURYA H and PANIGRAHI R K. Non-negative scattering power decomposition for PolSAR data interpretation[J]. IET Radar, Sonar & Navigation, 2018, 12(6): 593–602. doi: 10.1049/iet-rsn.2017.0581
    王春乐, 李光廷, 禹卫东. 改进的极化SAR图像三分量分解方法[J]. 宇航学报, 2013, 34(7): 980–986. doi: 10.3873/j.issn.1000-1328.2013.06.013

    WANG Chunle, LI Guangting, and YU Weidong. Improved three-component scattering power decomposition for polarimetric SAR image[J]. Journal of Astronautics, 2013, 34(7): 980–986. doi: 10.3873/j.issn.1000-1328.2013.06.013
    XIE Qinghua, ZHU Jianjun, LOPEZ-SANCHEZ J M, et al. A modified general polarimetric model-based decomposition method with the simplified Neumann volume scattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1229–1233. doi: 10.1109/LGRS.2018.2830503
    CHEN Siwei, WANG Xuesong, XIAO Shunping, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843–1855. doi: 10.1109/TGRS.2013.2255615
    ARII M, VAN ZYL J J, and KIM Y. A general characterization for polarimetric scattering from vegetation canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3349–3357. doi: 10.1109/tgrs.2010.2046331
    SATO A, YAMAGUCHI Y, SINGH G, et al. Four-component scattering power decomposition with extended volume scattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 166–170. doi: 10.1109/lgrs.2011.2162935
    许丽颖, 李世强, 邓云凯, 等. 基于极化干涉相似性参数的四元素分解[J]. 电子与信息学报, 2014, 36(4): 908–914. doi: 10.3724/SP.J.1146.2013.01095

    XU Liying, LI Shiqiang, DENG Yunkai, et al. Four-component decomposition based on polarimetric interferometric similarity parameter[J]. Journal of Electronics &Information Technology, 2014, 36(4): 908–914. doi: 10.3724/SP.J.1146.2013.01095
    LATRACHE H, OUARZEDDINE M, and SOUISSI B. Improved model-based polarimetric decomposition using the POLINSAR similarity parameter[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7: 847–850. doi: 10.5194/isprs-archives-XLI-B7-847-2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (2189) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return