Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Hongyun YANG, Fengyan WANG. Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098
Citation: Hongyun YANG, Fengyan WANG. Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2373-2381. doi: 10.11999/JEIT190098

Meteorological Radar Noise Image Semantic Segmentation Method Based on Deep Convolutional Neural Network

doi: 10.11999/JEIT190098
Funds:  The National Natural Science Foundation of China (U1833107), The National Science and Technology Major Project (2012ZX03002002)
  • Received Date: 2019-02-17
  • Rev Recd Date: 2019-06-04
  • Available Online: 2019-06-10
  • Publish Date: 2019-10-01
  • Considering the problem that the scattering echo image of the new generation Doppler meteorological radar is reduced by the noise echoes such as non-rainfall, the accuracy of the refined short-term weather forecast is reduced. A method for semantic segmentation of meteorological radar noise image based on Deep Convolutional Neural Network(DCNN) is proposed. Firstly, a Deep Convolutional Neural Network Model (DCNNM) is designed. The training set data of the MJDATA data set are used for training, and the feature is extracted by the forward propagation process, and the high-dimensional global semantic information of the image is merged with the local feature details. Then, the network parameters are updated by using the training error value back propagation iteration to optimize the convergence effect of the model. Finally, the meteorological radar image data are segmented by the model. The experimental results show that the proposed method has better denoising effect on meteorological radar images, and compared with the optical flow method and the Fully Convolutional Networks (FCN), the method has high recognition accuracy for meteorological radar image real echo and noise echo, and the image pixel precision is high.
  • loading
  • 杨植宗. 多普勒效应与多普勒雷达[J]. 物理通报, 2003(2): 47–48. doi: 10.3969/j.issn.0509-4038.2003.02.027

    YANG Zhizong. Doppler effect and Doppler radar[J]. Physics Bulletin, 2003(2): 47–48. doi: 10.3969/j.issn.0509-4038.2003.02.027
    NAGAYAMA S, MURAMATSU S, YAMADA H, et al. Millimeter wave radar image denoising with complex nonseparable oversampled lapped transform[C]. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 2017: 1824–1829.
    WU Peng, XU Hongling, and XIE Pengcheng. Research on ground penetrating radar image denoising using nonsubsampled contourlet transform and adaptive threshold algorithm[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(5): 219–228. doi: 10.14257/ijsip.2016.9.5.19
    MASTRIANI M. Denoising based on wavelets and deblurring via self-organizing map for Synthetic Aperture Radar images[J]. International Scholarly and Scientific Research & Innovation, 2008, 2(9): 2073–2082.
    王俊, 杨成龙. 结合小波分析和变分原理的雷达图像去噪模型[J]. 指挥控制与仿真, 2017, 39(5): 41–44. doi: 10.3969/j.issn.1673-3819.2017.05.009

    WANG Jun and YANG Chenglong. Radar image denoising model based on wavelet analysis and variation principle[J]. Command Control &Simulation, 2017, 39(5): 41–44. doi: 10.3969/j.issn.1673-3819.2017.05.009
    CHEN Chong and XU Zengbo. Aerial-image denoising based on convolutional neural network with multi-scale residual learning approach[J]. Information, 2018, 9(7): 169. doi: 10.3390/info9070169
    董晓亚, 赵晓丽, 张嘉祺. 一种改进的噪声图像语义分割方法[J]. 光电子·激光, 2017, 28(12): 1372–1377. doi: 10.16136/j.joel.2017.12.0103

    DONG Xiaoya, ZHAO Xiaoli, and ZHANG Jiaqi. An improved semantic segmentation method for noisy image[J]. Journal of Optoelectronics·Laser, 2017, 28(12): 1372–1377. doi: 10.16136/j.joel.2017.12.0103
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]. International Conference on Learning Representations, San Diego, USA, 2015.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    ACHILLE A and SOATTO S. Information dropout: Learning optimal representations through noisy computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2897–2905. doi: 10.1109/TPAMI.2017.2784440
    郭正红, 张俊华, 郭晓鹏, 等. 结合视觉显著图的Seam Carving图像缩放方法[J]. 云南大学学报: 自然科学版, 2018, 40(2): 222–227.

    GUO Zhenghong, ZHANG Junhua, GUO Xiaopeng, et al. Seam Carving image scaling method with visual significant graph[J]. Journal of Yunnan University:Natural Sciences Edition, 2018, 40(2): 222–227.
    岳鑫, 肖晨. 基于奇异值分解和双三次插值的图像缩放算法改进[J]. 西安邮电大学学报, 2018, 23(4): 72–77. doi: 10.13682/j.issn.2095-6533.2018.04.012

    YUE Xin and XIAO Chen. Improvement of image scaling algorithm based on singular value decomposition and bicubic interpolation[J]. Journal of Xian University of Posts and Telecommunications, 2018, 23(4): 72–77. doi: 10.13682/j.issn.2095-6533.2018.04.012
    KOMAR M, YAKOBCHUK P, GOLOVKO V, et al. Deep neural network for image recognition based on the Caffe framework[C]. The Second IEEE International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 2018: 102–106.
    DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: Learning optical flow with convolutional networks[C]. IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 2758–2766.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 3431–3440.
    CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. https://arxiv.org/abs/1706.05587, 2017.
    ZHUANG Juntang and YANG Junlin. ShelfNet for real-time semantic segmentation[EB/OL]. https://arxiv.org/abs/1811.11254v1, 2018.
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2980–2988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (6335) PDF downloads(270) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return