Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Yu ZHANG, Tianqi LI, Jin ZHANG, Bo TANG. Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition[J]. Journal of Electronics & Information Technology, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085
Citation: Yu ZHANG, Tianqi LI, Jin ZHANG, Bo TANG. Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition[J]. Journal of Electronics & Information Technology, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085

Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition

doi: 10.11999/JEIT190085
Funds:  The National Natural Science Foundation of China (61671453), The Natural Science Foundation of Anhui Province (1608085MF123), The Natural Science Foundation of National University of Defense Technology (ZK18-03-19)
  • Received Date: 2019-01-28
  • Rev Recd Date: 2019-03-20
  • Available Online: 2019-09-27
  • Publish Date: 2020-02-19
  • In order to study the subtle feature recognition of Identification Foe or Friend (IFF) radiation source signals, this paper proposes an IFF individual recognition method based on ensemble intrinsic time-scale decomposition to solve the problem of insufficient research on individual identification of IFF radiation source in complex noise environment. In this algorithm, the Ensemble Intrinsic Time-scale Decomposition (EITD) is applied to dividing the sampled signals into several practical signal components and obtaining the energy distribution diagram of the IFF radiation source signals in time-frequency domain. Through the texture analysis of time-frequency energy spectrum, the unintentional modulation feature of the radiation source signals is represented by the texture features of the image, which are sent to the Support Vector Machine (SVM) for classification and recognition. Experiments show that the proposed method is more accurate than the Hilbert-Huang Transform (HHT) and Inherent Time scale Decomposition (ITD) based method.

  • loading
  • 谭源泉, 李胜强, 王厚军. 西方体制Mark XIIA的Mode5数据格式分析[J]. 电子科技大学学报, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011

    TAN Yuanquan, LI Shengqiang, and WANG Houjun. Analysis on data format of Mode 5 in western Mark XIIA[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011
    LIU Mingwei and DOHERTY J F. Nonlinearity estimation for specific emitter identification in multipath channels[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1076–1085. doi: 10.1109/TIFS.2011.2134848
    龙慧敏. 基于时域调制域特征的 IFF 模式5信号识别[J]. 电讯技术, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009

    LONG Huimin. Identification of IFF Mode 5 signals based on time & modulation domain characteristics[J]. Telecommunication Engineering, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009
    李维科. 基于时域和编码特征的Mark XIIA IFF信号识别方法[J]. 兵器装备工程学报, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033

    LI Weike. Identification of Mark XIIA IFF signals based on time domain and coding characteristics[J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033
    许程成, 周青松, 张剑云, 等. 导数约束平滑条件下基于模糊函数特征的雷达辐射源信号识别方法[J]. 电子学报, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018

    XU Chengcheng, ZHOU Qingsong, ZHANG Jianyun, et al. Radar emitter recognition based on ambiguity function features with derivative constraint on smoothing[J]. Acta Electronica Sinica, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018
    WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the energy cumulant of short time fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18(9): 3103. doi: 10.3390/s18093103
    LIU Shaokun, YAN Xiaopeng, LI Ping, et al. Radar emitter recognition based on SIFT position and scale features[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 2062–2066. doi: 10.1109/TCSII.2018.2819666
    赵越, 陈之纯, 纠博, 等. 一种基于时频分析的窄带雷达飞机目标分类特征提取方法[J]. 电子与信息学报, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204

    ZHAO Yue, CHEN Zhichun, JIU Bo, et al. Narrowband aircraft targets feature extraction and classification based on time-frequency analysis[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204
    张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750

    ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
    任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299

    REN Dongfang, ZHANG Tao, HAN Jie, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299
    ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/tifs.2016.2520908
    WU Zhaohua and HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047
    FREI M G and OSORIO I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321–342. doi: 10.1098/rspa.2006.1761
    HU Aijun, YAN Xiaoan, and XIANG Ling. A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J]. Renewable Energy, 2015, 83: 767–778. doi: 10.1016/j.renene.2015.04.063
    HU Aijun, XIANG Ling, and GAO Nan. Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy[J]. Journal of Vibroengineering, 2017, 19(3): 1759–1770. doi: 10.21595/jve.2017.17465
    丛蕊, 高光甫, 樊瑞筱, 等. 基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法[J]. 振动与冲击, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015

    CONG Rui, GAO Guangfu, FAN Ruixiao, et al. Vibration image recognition method based on gray-gradient CO-occurrence matrix and kernel·-based fuzzy clustering[J]. Journal of Vibration and Shock, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2478) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return