Citation: | Yu ZHANG, Tianqi LI, Jin ZHANG, Bo TANG. Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition[J]. Journal of Electronics & Information Technology, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085 |
In order to study the subtle feature recognition of Identification Foe or Friend (IFF) radiation source signals, this paper proposes an IFF individual recognition method based on ensemble intrinsic time-scale decomposition to solve the problem of insufficient research on individual identification of IFF radiation source in complex noise environment. In this algorithm, the Ensemble Intrinsic Time-scale Decomposition (EITD) is applied to dividing the sampled signals into several practical signal components and obtaining the energy distribution diagram of the IFF radiation source signals in time-frequency domain. Through the texture analysis of time-frequency energy spectrum, the unintentional modulation feature of the radiation source signals is represented by the texture features of the image, which are sent to the Support Vector Machine (SVM) for classification and recognition. Experiments show that the proposed method is more accurate than the Hilbert-Huang Transform (HHT) and Inherent Time scale Decomposition (ITD) based method.
谭源泉, 李胜强, 王厚军. 西方体制Mark XIIA的Mode5数据格式分析[J]. 电子科技大学学报, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011
TAN Yuanquan, LI Shengqiang, and WANG Houjun. Analysis on data format of Mode 5 in western Mark XIIA[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011
|
LIU Mingwei and DOHERTY J F. Nonlinearity estimation for specific emitter identification in multipath channels[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1076–1085. doi: 10.1109/TIFS.2011.2134848
|
龙慧敏. 基于时域调制域特征的 IFF 模式5信号识别[J]. 电讯技术, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009
LONG Huimin. Identification of IFF Mode 5 signals based on time & modulation domain characteristics[J]. Telecommunication Engineering, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009
|
李维科. 基于时域和编码特征的Mark XIIA IFF信号识别方法[J]. 兵器装备工程学报, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033
LI Weike. Identification of Mark XIIA IFF signals based on time domain and coding characteristics[J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033
|
许程成, 周青松, 张剑云, 等. 导数约束平滑条件下基于模糊函数特征的雷达辐射源信号识别方法[J]. 电子学报, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018
XU Chengcheng, ZHOU Qingsong, ZHANG Jianyun, et al. Radar emitter recognition based on ambiguity function features with derivative constraint on smoothing[J]. Acta Electronica Sinica, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018
|
WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the energy cumulant of short time fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18(9): 3103. doi: 10.3390/s18093103
|
LIU Shaokun, YAN Xiaopeng, LI Ping, et al. Radar emitter recognition based on SIFT position and scale features[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 2062–2066. doi: 10.1109/TCSII.2018.2819666
|
赵越, 陈之纯, 纠博, 等. 一种基于时频分析的窄带雷达飞机目标分类特征提取方法[J]. 电子与信息学报, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204
ZHAO Yue, CHEN Zhichun, JIU Bo, et al. Narrowband aircraft targets feature extraction and classification based on time-frequency analysis[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204
|
张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
|
任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299
REN Dongfang, ZHANG Tao, HAN Jie, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299
|
ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/tifs.2016.2520908
|
WU Zhaohua and HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047
|
FREI M G and OSORIO I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321–342. doi: 10.1098/rspa.2006.1761
|
HU Aijun, YAN Xiaoan, and XIANG Ling. A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J]. Renewable Energy, 2015, 83: 767–778. doi: 10.1016/j.renene.2015.04.063
|
HU Aijun, XIANG Ling, and GAO Nan. Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy[J]. Journal of Vibroengineering, 2017, 19(3): 1759–1770. doi: 10.21595/jve.2017.17465
|
丛蕊, 高光甫, 樊瑞筱, 等. 基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法[J]. 振动与冲击, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015
CONG Rui, GAO Guangfu, FAN Ruixiao, et al. Vibration image recognition method based on gray-gradient CO-occurrence matrix and kernel·-based fuzzy clustering[J]. Journal of Vibration and Shock, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015
|