Advanced Search
Volume 42 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
Yu XU, Yu LIN, Haigang YANG. Optimization Algorithm of Dual-port Memory Mapping on FPGA[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2549-2556. doi: 10.11999/JEIT190077
Citation: Yu XU, Yu LIN, Haigang YANG. Optimization Algorithm of Dual-port Memory Mapping on FPGA[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2549-2556. doi: 10.11999/JEIT190077

Optimization Algorithm of Dual-port Memory Mapping on FPGA

doi: 10.11999/JEIT190077
Funds:  The National Natural Science Foundation of China (61474120, 61404140, 61704173)
  • Received Date: 2019-01-28
  • Rev Recd Date: 2020-01-20
  • Available Online: 2020-07-20
  • Publish Date: 2020-10-13
  • FPGA memory mapping algorithm utilizes distributed storage resources on chip and cooperates with some auxiliary circuits to realize the different needs of users in designing logical storage functions. Previous studies on dual-port memory mapping algorithm are relatively few. There is still much space for improvement in the mapping results by mature commercial EDA tools. An optimization algorithm of dual-port memory mapping is proposed for area, delay and power consumption, and a specific configuration scheme is given. Experiments show that when facing simple storage requirements, the mapping results are consistent with those of commercial tools; when facing complex storage requirements, the mapping results of area optimization and power optimization are improved by at least 50% compared with commercial tools Vivado.
  • loading
  • TRIMBERGER S M. Three ages of FPGAs: A retrospective on the first thirty years of FPGA technology[J]. Proceedings of the IEEE, 2015, 103(3): 318–331. doi: 10.1109/JPROC.2015.2392104
    KUON I and ROSE J. Measuring the gap between FPGAs and ASICs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(2): 203–215. doi: 10.1109/TCAD.2006.884574
    WILTON S J E. Architectures and algorithms for Field-Programmable Gate Arrays with embedded memory[D]. [Ph. D. dissertation], University of Toronto, 1997.
    TESSIER R, BETZ V, NETO D, et al. Power-efficient RAM mapping algorithms for FPGA embedded memory blocks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(2): 278–290. doi: 10.1109/TCAD.2006.887924
    HSU T Y and WANG Tingchi. A generalized network flow based algorithm for power-aware FPGA memory mapping[C]. The 45th ACM/IEEE Design Automation Conference, Anaheim, USA, 2008: 30–33.
    DU Fangqing, LIN C Y, CUI Xiuhai, et al. Timing-constrained minimum area/power FPGA memory mapping[C]. The 23rd International Conference on Field programmable Logic and Applications, Porto, Portugal, 2013: 1–4.
    HO W K C and WILTON S J E. Logical-to-physical memory mapping for FPGAs with dual-port embedded arrays[C]. The 9th International Workshop on Field Programmable Logic and Applications, Glasgow, UK, 1999: 111–123.
    CONG J and YAN K. Synthesis for FPGAs with embedded memory blocks[C]. 2000 ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays, Monterey, USA, 2000: 75–82.
    MA Yufei, CAO Yu, VRUDHULA S, et al. An automatic RTL compiler for high-throughput FPGA implementation of diverse deep convolutional neural networks[C]. The 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 2017: 1–8.
    GUAN Yijin, LIANG Hao, XU Ningyi, et al. FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates[C]. The 25th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, USA, 2017: 152–159.
    LIANG Shuang, YIN Shouyi, LIU Leibo, et al. FP-BNN: Binarized neural network on FPGA[J]. Neurocomputing, 2018, 275: 1072–1086. doi: 10.1016/j.neucom.2017.09.046
    GUO Kaiyuan, SUI Lingzhi, QIU Jiantao, et al. Angel-eye: A complete design flow for mapping CNN onto embedded FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(1): 35–47. doi: 10.1109/TCAD.2017.2705069
    MA Yufei, SUDA N, CAO Yu, et al. ALAMO: FPGA acceleration of deep learning algorithms with a modularized RTL compiler[J]. Integration, 2018, 62: 14–23. doi: 10.1016/j.vlsi.2017.12.009
    Xilinx. Virtex-4 FPGA user guide[EB/OL]. https://china.xilinx.com/support/documentation/user_guides/ug070.pdf, 2008.
    Xilinx. LogiCORE IP product guide block memory generator v8.4[EB/OL]. https://china.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_4/pg058-blk-mem-gen.pdf, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (1929) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return