Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Jing LIANG, Hongju LI, Feng ZHAO, Jian DING. A Method for Constructing GC Constant Weight DNA Codes[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2423-2427. doi: 10.11999/JEIT190070
Citation: Jing LIANG, Hongju LI, Feng ZHAO, Jian DING. A Method for Constructing GC Constant Weight DNA Codes[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2423-2427. doi: 10.11999/JEIT190070

A Method for Constructing GC Constant Weight DNA Codes

doi: 10.11999/JEIT190070
Funds:  Anhui University Natural Science Research Project (KJ2017A623, KJ2018A0584), Anhui Xinhua University Natural Science Key Project (2018zr001)
  • Received Date: 2019-01-24
  • Rev Recd Date: 2019-08-15
  • Available Online: 2019-08-29
  • Publish Date: 2019-10-01
  • GC weight is an important parameter of DNA code, and how to meet GC constant weight constraint DNA code is an interesting problem. In this paper, by establishing a bijection between DNA code and quaternion code, the DNA code that satisfies the GC constant weight constraint is converted into a GC constant weight quaternary code. Through the algebraic method, three types of DNA codes that meet the constant weight constraints of GC are constructed.
  • loading
  • ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651
    FRUTOS A G, LIU Qinghua, THIEL A J, et al. Demonstration of a word design strategy for DNA computing on surfaces[J]. Nucleic Acids Research, 1997, 25(23): 4748–4757. doi: 10.1093/nar/25.23.4748
    MARATHE A, CONDON A E, and CORN R M. On combinatorial DNA word design[J]. Journal of Computational Biology, 2001, 8(3): 201–220. doi: 10.1089/10665270152530818
    RYKO V V, MACULA A J, TORNEY D C, et al. DNA sequences and quaternary cyclic codes[C]. 2001 IEEE International Symposium on Information. Washington, USA, 2001: 248–248.
    GABORIT P and KING O D. Linear constructions for DNA codes[J]. Theoretical Computer Science, 2005, 334(1/3): 99–113. doi: 10.1016/j.tcs.2004.11.004
    ABUALRUB T, GHRAYEB A, and ZENG Xiangnian. Construction of cyclic codes over GF(4) for DNA computing[J]. Journal of the Franklin Institute, 2006, 343(4/5): 448–457. doi: 10.1016/j.jfranklin.2006.02.009
    SIAP I, ABUALRUB T, and GHRAYEB A. Cyclic DNA codes over the ring ${F_2}\left[ u \right]/\left( {{u^2} - 1} \right)$ based on the deletion distance[J]. Journal of the Franklin Institute, 2009, 346(8): 731–740. doi: 10.1016/j.jfranklin.2009.07.002
    GUENDA K and GULLIVER T A. Construction of cyclic codes over ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}$ for DNA computing[J]. Applicable Algebra in Engineering, Communication and Computing, 2013, 24(6): 445–459. doi: 10.1007/s00200-013-0188-x
    LIANG Jing and WANG Liqi. On cyclic DNA codes over ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}$ [J]. Journal of Applied Mathematics and Computing, 2016, 51(1/2): 81–91. doi: 10.1007/s12190-015-0892-8
    ZHU Shixin and CHEN Xiaojing. Cyclic DNA codes over ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}+v{{\mathbb{F}}_{2}}+uv{{\mathbb{F}}_{2}}$ and their applications[J]. Journal of Applied Mathematics and Computing, 2017, 55(1/2): 479–493. doi: 10.1007/s12190-016-1046-3
    DINH H Q, SINGH A K, PATTANAYAK S, et al. Cyclic DNA codes over the ring ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}+v{{\mathbb{F}}_{2}}+ uv{{\mathbb{F}}_{2}}+$ ${{\rm{v}}^{\rm{2}}}{{\mathbb{F}}_{2}}+u{{v}^{2}}{{\mathbb{F}}_{2}}$ [J]. Designs, Codes and Cryptography, 2018, 86(7): 1451–1467. doi: 10.1007/s10623-017-0405-x
    SHI Minjia and LU Yaqi. Cyclic DNA codes over ${{\mathbb{F}}_{2}}[u,v]/<{{u}^{3}},{{v}^{2}}-v,vu-uv>$ [J]. Advances in Mathematics of Communications, 2019, 13(1): 157–164. doi: 10.3934/amc.2019009
    SINGH A K, KUMAR N, MISHRA P, et al. Construction of dual cyclic codes over ${{\mathbb{F}}_{2}}[u,v]/\left\langle {{u}^{2}},{{v}^{2}}-v,uv-vu \right\rangle $ for DNA Computation[J]. Defence Science Journal, 2018, 68(5): 467–472. doi: 10.14429/dsj.68.12344
    OZTAS E S, YILDIZ B, and SIAP I. A novel approach for constructing reversible codes and applications to DNA codes over the ring ${{{\mathbb{F}}_{2}}[u]}/{<{{u}^{2k}}-1>}\;$ [J]. Finite Fields and Their Applications, 2017, 46: 217–234. doi: 10.1016/j.ffa.2017.04.001
    LIDL R and NIEDERREITE H. Finite Fields[M]. New York: Addison-Wesley Publishing Company, 1983.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2124) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return