Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Huilan LUO, Fei LU, Fansheng KONG. Image Semantic Segmentation Based on Region and Deep Residual Network[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2777-2786. doi: 10.11999/JEIT190056
Citation: Huilan LUO, Fei LU, Fansheng KONG. Image Semantic Segmentation Based on Region and Deep Residual Network[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2777-2786. doi: 10.11999/JEIT190056

Image Semantic Segmentation Based on Region and Deep Residual Network

doi: 10.11999/JEIT190056
Funds:  The National Natural Science Foundation of China (61862031, 61462035), The Natural Science Foundation of Jiangxi Province (20171BAB202014)
  • Received Date: 2019-01-18
  • Rev Recd Date: 2019-04-05
  • Available Online: 2019-04-22
  • Publish Date: 2019-11-01
  • An image semantic segmentation model based on region and deep residual network is proposed. Region based methods use multi-scale to create overlapping regions, which can identify multi-scale objects and obtain fine object segmentation boundary. Fully convolutional methods learn features automatically by using Convolutional Neural Network (CNN) to perform end-to-end training for pixel classification tasks, but typically produce coarse segmentation boundaries. The advantages of these two methods are combined: firstly, candidate regions are generated by region generation network, and then the image is fed through the deep residual network with dilated convolution to obtain the feature map. Then the candidate regions and the feature maps are combined to get the features of the regions, and the features are mapped to each pixel in the regions. Finally, the global average pooling layer is used to classify pixels. Multiple different models are obtained by training with different sizes of candidate region inputs. When testing, the final segmentation are obtained by fusing the classification results of these models. The experimental results on SIFT FLOW and PASCAL Context datasets show that the proposed method has higher average accuracy than some state-of-the-art algorithms.
  • loading
  • 魏云超, 赵耀. 基于DCNN的图像语义分割综述[J]. 北京交通大学学报, 2016, 40(4): 82–91. doi: 10.11860/j.issn.1673-0291

    WEI Yunchao and ZHAO Yao. A review on image semantic segmentation based on DCNN[J]. Journal of Beijing Jiaotong University, 2016, 40(4): 82–91. doi: 10.11860/j.issn.1673-0291
    CARREIRA J, LI Fuxin, and SMINCHISESCU C. Object recognition by sequential figure-ground ranking[J]. International Journal of Computer Vision, 2012, 98(3): 243–262. doi: 10.1007/s11263-011-0507-2
    CARREIRA J, CASEIRO R, BATISTA J, et al. Semantic segmentation with second-order pooling[C]. Proceedings of the 12th European Conference on Computer Vision 2012, Berlin, Germany, 2012: 430–443.
    ARBELÁEZ P, HARIHARAN B, GU Chunhui, et al. Semantic segmentation using regions and parts[C]. Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3378–3385.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2014: 580–587.
    GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2015(4): 357–361. doi: 10.1080/17476938708814211
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171. doi: 10.1007/s11263-013-0620-5
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    YU Tianshu, YAN Junchi, ZHAO Jieyi, et al. Joint cuts and matching of partitions in one graph[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 705–713.
    HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]. Proceedings of the 13th Conference on Computer Vision, Zurich, Switzerland, 2014: 297–312.
    DAI Jifeng, HE Kaiming, and SUN Jian. Convolutional feature masking for joint object and stuff segmentation[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3992–4000.
    CAESAR H, UIJLINGS J, and FERRARI V. Region-based semantic segmentation with end-to-end training[C]. Proceedings of the 14th European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 2016: 381–397.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. https://arxiv.org/abs/1511.07122, 2015.
    LIN Min, CHEN Qiang, and YAN Shuicheng. Network in network[EB/OL]. https://arxiv.org/abs/1312.4400, 2014.
    LIU Ce, YUEN J, and TORRALBA A. Nonparametric scene parsing via label transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2368–2382. doi: 10.1109/TPAMI.2011.131
    MOTTAGHI R, CHEN Xianjie, LIU Xiaobai, et al. The role of context for object detection and semantic segmentation in the wild[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 891–898.
    YANG Jimei, PRICE B, COHEN S, et al. Context driven scene parsing with attention to rare classes[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 3294–3301.
    EIGEN D and FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2650–2658.
    DAI Jifeng, HE Kaiming, and SUN Jian. Boxsup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1635–1643.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (3597) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return