Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Jie XU, Ke XU, Zhixiang HUANG. A New High Order Finite Difference Time Domain Method[J]. Journal of Electronics & Information Technology, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050
Citation: Jie XU, Ke XU, Zhixiang HUANG. A New High Order Finite Difference Time Domain Method[J]. Journal of Electronics & Information Technology, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050

A New High Order Finite Difference Time Domain Method

doi: 10.11999/JEIT190050
Funds:  The Natural National Natural Science of China (61722101, 61801002,61701001, 61701003), The Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University (2019AH001)
  • Received Date: 2019-01-17
  • Rev Recd Date: 2019-08-28
  • Available Online: 2019-09-02
  • Publish Date: 2020-02-19
  • Compared with the traditional high-order Finite Difference Time Domain(FDTD) Method, an improved high-order FDTD optimization method is proposed in this paper. This algorithm is based on Ampere’s law of circuits and finds a set of optimal coefficients through computer technology to minimize the global dispersion error of the FDTD method.The simulation of point source radiation with different resolutions shows that this method still has very low phase error in the case of lower resolution. It provides an effective solution to the problem of numerical dispersion in the modeling of large size structures.

  • loading
  • YEE K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693
    葛德彪, 闫玉波. 电磁波时域有限差分法[M]. 2版. 西安: 西安电子科技大学出版社, 2005: 58–108.

    GE Debiao and YAN Yubo. Finite Difference Time Domain Method for Electromagnetic Waves[M]. 2nd ed. Xi’an: Xidian University Press, 2005: 58–108.
    KIM I S and HOEFER W J R. Numerical dispersion characteristics and stability factor for the TD-FD method[J]. Electronics Letters, 1990, 26(7): 485–487. doi: 10.1049/el:19900315
    CANGELLARIS A C and LEE R. On the accuracy of numerical wave simulations based on finite methods[J]. Journal of Electromagnetic Waves and Applications, 1992, 6(12): 1635–1653. doi: 10.1163/156939392X00779
    SHLAGER K L, MALONEY J G, RAY S L, et al. Relative accuracy of several finite-difference time-domain methods in two and three dimensions[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(12): 1732–1737. doi: 10.1109/8.273296
    何四华, 吴春光, 丛滨. 基于高频方法的电大尺寸目标RCS仿真与分析[J]. 现代雷达, 2017, 39(6): 77–80. doi: 10.16592/j.cnki.1004-7859.2017.06.018

    HE Sihua, WU Chunguang, and CONG Bin. RCS simulation and analysis of electrically large objects based on high frequency method[J]. Modern Radar, 2017, 39(6): 77–80. doi: 10.16592/j.cnki.1004-7859.2017.06.018
    杨杨, 朱劼, 邹宁, 等. 电大凸目标电磁散射的数值路径变换算法研究[J]. 电波科学学报, 2017, 32(2): 199–206. doi: 10.13443/j.cjors.2017012201

    YANG Yang, ZHU Jie, ZOU Ning, et al. Numerical contour deformation method for calculating the scattered field from the electrically large convex scatterers[J]. Chinese Journal of Radio Science, 2017, 32(2): 199–206. doi: 10.13443/j.cjors.2017012201
    GAO Min, YANG Feng, YAN Fei, et al. Improved quasi-analytic method for transient analysis of electrically large conducting targets illuminated by a complex source beam[J]. IET Microwaves, Antennas & Propagation, 2017, 11(8): 1139–1146. doi: 10.1049/iet-map.2016.0796
    HADI M F, BOLLIMUNTHA R C, ELSHERBENI A Z, et al. A spherical FDTD numerical dispersion relation based on elemental spherical wave functions[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 784–788. doi: 10.1109/LAWP.2018.2816459
    PEREDA J A and GRANDE A. Numerical dispersion relation for the 2-D LOD-FDTD method in lossy media[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2122–2125. doi: 10.1109/LAWP.2017.2699692
    KANG Zhen, MA Xikui, and SHAO Jinghui. A low-dispersion realization of a rectangular grid with PITD method through artificial anisotropy[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 320–322. doi: 10.1109/LMWC.2017.2678399
    ZHOU Longjian, YANG Feng, LONG Rui, et al. A hybrid method of higher-order FDTD and subgridding technique[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1261–1264. doi: 10.1109/LAWP.2015.2504448
    苏卓, 谭峻东, 张俊, 等. 基于高阶时域有限差分算法的电磁波传播计算[J]. 电波科学学报, 2014, 29(3): 431–436. doi: 10.13443/j.cjors.2013060801

    SU Zhuo, TAN Jundong, ZHANG Jun, et al. An electromagnetic wave propagator based on higher-order FDTD method[J]. Chinese Journal of Radio Science, 2014, 29(3): 431–436. doi: 10.13443/j.cjors.2013060801
    SAXENA A K and SRIVASTAVA K V. Higher order LOD-FDTD methods and their numerical dispersion properties[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1480–1485. doi: 10.1109/TAP.2017.2653758
    REN Xingang, HUANG Zhixiang, WU Xianliang, et al. High-order unified symplectic FDTD scheme for the metamaterials[J]. Computer Physics Communications, 2012, 183(6): 1192–1200. doi: 10.1016/j.cpc.2012.01.021
    WEI Xiaokun, SHAO Wei, SHI Shengbing, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4374–4383. doi: 10.1109/TAP.2016.2596899
    TAFLOVE A. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. Boston: Artech House, 1995: 109–174.
    HADI M F. A modified FDTD (2, 4) scheme for modeling electricallylarge stuctures with high phase accuracy[D]. [Ph.D. dissertation], University of Colorado, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (2704) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return