Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851
Citation:
Jie XU, Ke XU, Zhixiang HUANG. A New High Order Finite Difference Time Domain Method[J]. Journal of Electronics & Information Technology, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050
Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851
Citation:
Jie XU, Ke XU, Zhixiang HUANG. A New High Order Finite Difference Time Domain Method[J]. Journal of Electronics & Information Technology, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050
College of Electronic Information Engineering, Anhui University, Hefei 230039, China
Funds:
The Natural National Natural Science of China (61722101, 61801002,61701001, 61701003), The Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University (2019AH001)
Compared with the traditional high-order Finite Difference Time Domain(FDTD) Method, an improved high-order FDTD optimization method is proposed in this paper. This algorithm is based on Ampere’s law of circuits and finds a set of optimal coefficients through computer technology to minimize the global dispersion error of the FDTD method.The simulation of point source radiation with different resolutions shows that this method still has very low phase error in the case of lower resolution. It provides an effective solution to the problem of numerical dispersion in the modeling of large size structures.
上世纪80年代,基于椭圆曲线的密码体制(ECC)开始发展。由于在椭圆曲线上实现的公钥加密、数字签名、密钥交换等密码原语,在和传统方案达到相同安全级别的要求下,所需要的密钥更小,实现速度更快,已经在过去的几十年中被广泛的使用到各种应用和程序之中。而ECC安全性的关键,就在于椭圆曲线上离散对数问题(ECDLP)的困难性。ECDLP问题的一个实例$({\mathbb{F}_q},\mathcal{E}({\mathbb{F}_q}),p,Q,P)$是:定义在有限域${\mathbb{F}_q}$上的椭圆曲线$\mathcal{E}({\mathbb{F}_q})$, $P \in \mathcal{E}({\mathbb{F}_q})$为其上的一个$p$阶点,$\left\langle P \right\rangle $为以点$P$为生成点构成的$p$阶子群,对$Q \in \left\langle P \right\rangle $,求$0 \le s < p$使得$Q = sP$。目前为止,除了一些特殊的曲线,ECDLP求解算法的计算复杂度仍然是${{O}}(\sqrt p )$。
YEE K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693
GE Debiao and YAN Yubo. Finite Difference Time Domain Method for Electromagnetic Waves[M]. 2nd ed. Xi’an: Xidian University Press, 2005: 58–108.
KIM I S and HOEFER W J R. Numerical dispersion characteristics and stability factor for the TD-FD method[J]. Electronics Letters, 1990, 26(7): 485–487. doi: 10.1049/el:19900315
CANGELLARIS A C and LEE R. On the accuracy of numerical wave simulations based on finite methods[J]. Journal of Electromagnetic Waves and Applications, 1992, 6(12): 1635–1653. doi: 10.1163/156939392X00779
SHLAGER K L, MALONEY J G, RAY S L, et al. Relative accuracy of several finite-difference time-domain methods in two and three dimensions[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(12): 1732–1737. doi: 10.1109/8.273296
HE Sihua, WU Chunguang, and CONG Bin. RCS simulation and analysis of electrically large objects based on high frequency method[J]. Modern Radar, 2017, 39(6): 77–80. doi: 10.16592/j.cnki.1004-7859.2017.06.018
YANG Yang, ZHU Jie, ZOU Ning, et al. Numerical contour deformation method for calculating the scattered field from the electrically large convex scatterers[J]. Chinese Journal of Radio Science, 2017, 32(2): 199–206. doi: 10.13443/j.cjors.2017012201
GAO Min, YANG Feng, YAN Fei, et al. Improved quasi-analytic method for transient analysis of electrically large conducting targets illuminated by a complex source beam[J]. IET Microwaves, Antennas & Propagation, 2017, 11(8): 1139–1146. doi: 10.1049/iet-map.2016.0796
HADI M F, BOLLIMUNTHA R C, ELSHERBENI A Z, et al. A spherical FDTD numerical dispersion relation based on elemental spherical wave functions[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 784–788. doi: 10.1109/LAWP.2018.2816459
PEREDA J A and GRANDE A. Numerical dispersion relation for the 2-D LOD-FDTD method in lossy media[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2122–2125. doi: 10.1109/LAWP.2017.2699692
KANG Zhen, MA Xikui, and SHAO Jinghui. A low-dispersion realization of a rectangular grid with PITD method through artificial anisotropy[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 320–322. doi: 10.1109/LMWC.2017.2678399
ZHOU Longjian, YANG Feng, LONG Rui, et al. A hybrid method of higher-order FDTD and subgridding technique[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1261–1264. doi: 10.1109/LAWP.2015.2504448
SU Zhuo, TAN Jundong, ZHANG Jun, et al. An electromagnetic wave propagator based on higher-order FDTD method[J]. Chinese Journal of Radio Science, 2014, 29(3): 431–436. doi: 10.13443/j.cjors.2013060801
SAXENA A K and SRIVASTAVA K V. Higher order LOD-FDTD methods and their numerical dispersion properties[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1480–1485. doi: 10.1109/TAP.2017.2653758
REN Xingang, HUANG Zhixiang, WU Xianliang, et al. High-order unified symplectic FDTD scheme for the metamaterials[J]. Computer Physics Communications, 2012, 183(6): 1192–1200. doi: 10.1016/j.cpc.2012.01.021
WEI Xiaokun, SHAO Wei, SHI Shengbing, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4374–4383. doi: 10.1109/TAP.2016.2596899
TAFLOVE A. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. Boston: Artech House, 1995: 109–174.
HADI M F. A modified FDTD (2, 4) scheme for modeling electricallylarge stuctures with high phase accuracy[D]. [Ph.D. dissertation], University of Colorado, 1996.
Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851
Zhuoran ZHANG, Huang ZHANG, Fangguo ZHANG. Survey on Applications of List Decoding to Cryptography[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1049-1060. doi: 10.11999/JEIT190851