Citation: | Xiuli BI, Yang WEI, Bin XIAO, Weisheng LI, Jianfeng MA. Image Forgery Detection Algorithm Based on Cascaded Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2987-2994. doi: 10.11999/JEIT190043 |
MAHDIAN B and SAIC S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10): 1497–1503. doi: 10.1016/j.imavis.2009.02.001
|
FARID H. Exposing digital forgeries from JPEG ghosts[J]. IEEE Transactions on Information Forensics and Security, 2009, 4(1): 154–160. doi: 10.1109/TIFS.2008.2012215
|
YE Shuiming, SUN Qibin, and CHANG E C. Detecting digital image forgeries by measuring inconsistencies of blocking artifact[C]. 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2007: 12–15. doi: 10.1109/ICME.2007.4284574.
|
BIANCHI T and PIVA A. Image forgery localization via block-grained analysis of JPEG artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 1003–1017. doi: 10.1109/TIFS.2012.2187516
|
RAO Y and NI Jiangqun. A deep learning approach to detection of splicing and copy-move forgeries in images[C]. 2016 IEEE International Workshop on Information Forensics and Security, Abu Dhabi, UAE, 2016: 1–6. doi: 10.1109/WIFS.2016.7823911.
|
ZHANG Ying, GOH J, WIN L L, et al. Image region forgery detection: A Deep Learning Approach[M]. MATHUR A and ROYCHOUDHURY R. Proceedings of the Singapore Cyber-Security Conference. Amsterdam: IOS Press, 2016: 1–11. doi: 10.3233/978-1-61499-617-0-1.
|
BAPPY J H, ROY-CHOWDHURY A K, BUNK J, et al. Exploiting spatial structure for localizing manipulated image regions[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4980–4989. doi: 10.1109/ICCV.2017.532.
|
WEI Yang, BI Xiuli, and XIAO Bin. C2R Net: The coarse to refined network for image forgery detection[C]. The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering, New York, USA, 2018: 1656–1659. doi: 10.1109/TrustCom/BigDataSE.2018.00245.
|
HUH M, LIU A, OWENS A, et al. Fighting fake news: Image splice detection via learned self-consistency[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 106–124. doi: 10.1007/978-3-030-01252-6_7.
|
SIMONYAN K and ZISSERMAN A. Very deep convolu-tional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556, 2014.
|
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL]. https://arxiv.org/abs/1502.03167, 2015.
|
NAIR V and HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. The 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807-814.
|
BEEFERMAN D and BERGER A. Agglomerative clustering of a search engine query log[C]. The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000: 407-416. doi: 10.1145/347090.347176.
|
BARBER C B, DOBKIN D P, and HUHDANPAA H. The quickhull algorithm for convex hulls[J]. ACM Transactions on Mathematical Software, 1996, 22(4): 469–483. doi: 10.1145/235815.235821
|
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851
|
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
|