Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Guo HUANG, Li XU, Qingli CHEN, Yifei Pu. Research on Non-local Multi-scale Fractional Differential Image Enhancement Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2972-2979. doi: 10.11999/JEIT190032
Citation: Guo HUANG, Li XU, Qingli CHEN, Yifei Pu. Research on Non-local Multi-scale Fractional Differential Image Enhancement Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2972-2979. doi: 10.11999/JEIT190032

Research on Non-local Multi-scale Fractional Differential Image Enhancement Algorithm

doi: 10.11999/JEIT190032
Funds:  The National Natural Science Foundation of China (61201438), The Sichuan Province Science and Technology Department Application Foundation Project (2016JY0238), The Sichuan Province Education Department Key Projects (18ZA0235), The Sichuan Province Education Department General Project (18ZB0268, 18ZB0266), The Research Fund of Leshan Normal University (JG2018-1-04)
  • Received Date: 2019-01-15
  • Rev Recd Date: 2019-07-31
  • Available Online: 2019-08-30
  • Publish Date: 2019-12-01
  • In order to enhance the useful information in the image and improve the visual effect of the image, a Non-local Multi-scale Fractional Differential(NMFD) image enhancement operator is proposed. The operator divides the image into several sub-images and calculates the edge intensity coefficient, entropy value and roughness of each sub-image, and the obtained feature data are normalized in a unified scale in the global image range. Then, the normalized data are weighted to be the non-local eigenvalues of the image. Finally, an exponential function is used to establish the non-linear quantization relationship between image detail features and the value of fractional order. Thus, the fractional order of different scales can be determined in different image sub-block regions, so that the non-local multi-scale image enhancement model is realized.
  • loading
  • MANDELBROT B B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman and Company, 1983.
    AZARANG A and GHASSEMIAN H. Application of fractional-order differentiation in multispectral image fusion[J]. Remote Sensing Letters, 2017, 9(1): 91–100. doi: 10.1080/2150704X.2017.1395963
    LI Bo and XIE Wei. Adaptive fractional differential approach and its application to medical image enhancement[J]. Computers & Electrical Engineering, 2015, 45: 324–335. doi: 10.1016/j.compeleceng.2015.02.013
    BAI Jian and FENG Xiangchu. Fractional-order anisotropic diffusion for image denoising[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2492–2502. doi: 10.1109/TIP.2007.904971
    HU Fuyuan, SI Shaohui, WONG H S, et al. An adaptive approach for texture enhancement based on a fractional differential operator with non-integer step and order[J]. Neurocomputing, 2015, 158: 295–306. doi: 10.1016/j.neucom.2014.10.013
    HE Ning, WANG Jinbao, ZHANG Lulu, et al. An improved fractional-order differentiation model for image denoising[J]. Signal Processing, 2015, 112: 180–188. doi: 10.1016/j.sigpro.2014.08.025
    YUAN Jianjun and LIU Lipei. Anisotropic diffusion model based on a new diffusion coefficient and fractional order differential for image denoising[J]. International Journal of Image and Graphics, 2016, 16(1): 1650003. doi: 10.1142/S0219467816500030
    JALAB H A, IBRAHIM R W, and AHMED A. Image denoising algorithm based on the convolution of fractional Tsallis entropy with the Riesz fractional derivative[J]. Neural Computing and Applications, 2017, 28(S1): 217–223. doi: 10.1007/s00521-016-2331-7
    PU Yifei, ZHOU Jiliu, and YUAN Xiao. Fractional differential mask: A fractional differential-based approach for multiscale texture enhancement[J]. IEEE Transactions on Image Processing, 2010, 19(2): 491–511. doi: 10.1109/TIP.2009.2035980
    PU Yifei, SIARRY P, CHATTERJEE A, et al. A fractional-order variational framework for retinex: Fractional-order partial differential equation-based formulation for multi-scale nonlocal contrast enhancement with texture preserving[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1214–1229. doi: 10.1109/TIP.2017.2779601
    牛为华, 孟建良, 崔克彬, 等. 利用Grümwald-Letnikov分数阶方向导数的图像增强方法[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 129–137. doi: 10.3969/j.issn.1003-9775.2016.01.016

    NIU Weihua, MENG Jianliang, CUI Kebin, et al. Image enhancement method using grümwald -letnikov fractional directional differential[J]. Journal of Computer-Aided Design &Computer Graphics, 2016, 28(1): 129–137. doi: 10.3969/j.issn.1003-9775.2016.01.016
    GAO Caobang, ZHOU Jiliu, HU Jingrong, et al. Edge detection of colour image based on quaternion fractional differential[J]. IET Image Processing, 2011, 5(3): 261–272. doi: 10.1049/iet-ipr.2009.0409
    李博, 谢巍. 基于自适应分数阶微积分的图像去噪与增强算法[J]. 系统工程与电子技术, 2016, 38(1): 185–192. doi: 10.3969/j.issn.1001-506X.2016.01.29

    LI Bo and XIE Wei. Image enhancement and denoising algorithms based on adaptive fractional differential and integral[J]. Systems Engineering and Electronics, 2016, 38(1): 185–192. doi: 10.3969/j.issn.1001-506X.2016.01.29
    陈庆利, 黄果, 门涛, 等. 数字图像的局部分数阶微分增强[J]. 四川大学学报: 工程科学版, 2016, 48(4): 115–122. doi: 10.15961/j.jsuese.2016.04.016

    CHEN Qingli, HUANG Guo, MEN Tao, et al. Local fractional differential algorithm for image enhancement[J]. Journal of Sichuan University:Engineering Science Edition, 2016, 48(4): 115–122. doi: 10.15961/j.jsuese.2016.04.016
    姒绍辉, 胡伏原, 付保川, 等. 自适应非整数步长的分数阶微分掩模的图像纹理增强算法[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1438–1449.

    SI Shaohui, HU Fuyuan, FU Baochuan, et al. An algorithm for texture enhancement based on fractional differential mask using adaptive non-integer step[J]. Journal of Computer-Aided Design &Computer Graphics, 2014, 26(9): 1438–1449.
    ZHAO Mengdan, GAO Xuzhen, PAN Yue, et al. Image encryption based on fractal-structured phase mask in fractional Fourier transform domain[J]. Journal of Optics, 2018, 20(4): 045703. doi: 10.1088/2040-8986/aab247
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (2483) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return