Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Shanhong HE, Mengqian JI, Liangyu XIE, Jin FAN, Chong FAN. A Fast and Robust Design Method for Dense Focal Plane Array Feed[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2623-2631. doi: 10.11999/JEIT190026
Citation: Shanhong HE, Mengqian JI, Liangyu XIE, Jin FAN, Chong FAN. A Fast and Robust Design Method for Dense Focal Plane Array Feed[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2623-2631. doi: 10.11999/JEIT190026

A Fast and Robust Design Method for Dense Focal Plane Array Feed

doi: 10.11999/JEIT190026
Funds:  The National Natural Science Foundation of China (U1631115, 11403054), The Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Science(U1631115), The Swedish Foundation for International Cooperation with NSFC in Research and Higher Education (11611130023)
  • Received Date: 2019-01-11
  • Rev Recd Date: 2019-04-18
  • Available Online: 2019-05-23
  • Publish Date: 2019-11-01
  • The Dense Focal Plane Array Feed (DFPAF), which integrates the characters of multi-beam feed with multiple independent horns and Phased Array Feed (PAF), can simultaneously provide more fixed shaped beams and wider field of view than multi-beam feed with multiple independent horns and PAF. It attracts more attention in radio telescope, radar, electronic reconnaissance, satellite communication and so on. Its unique structure promotes the studies on special design method recently. Combing the theory of array antenna and inherent characteristic of parabolic reflector antenna, a fast design method with robust processing procedure is proposed in this paper. The design principle, calculated results, and comparison between DFPAF and the most representative multi-beam feed with multiple independent horns are presented. All these provide a theoretical basis and reference data for the design of giant reflector with DFPAF.
  • loading
  • CHEN Yang, MENG Hongfu, GAN Yu, et al. Millimeter wave multi-beam reflector antenna[C]. 2018 International Workshop on Antenna Technology, Nanjing, China, 2018: 1–3. doi: 10.1109/IWAT.2018.8379140.
    MANOOCHEHRI O, EMADEDDIN A, DARVAZEHBAN A, et al. A new method for designing high efficiency multi feed multi beam reflector antennas[C]. 2017 International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 2017: 551–554. doi: 10.1109/ICEAA.2017.8065304.
    ANGEVAIN J C, FONSECA N, SCHOBERT D, et al. Multibeam reflector antennas for space applications: Current trends and future perspectives in Europe[C]. The 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.0804.
    HE Shanhong, LI Wenkai, LU Xiaojia, et al. Predicting influence of the rest spherical surface on the instantaneous parabolic surface of multi-beam for radio astronomy[C]. 2018 IEEE MTT-S international wireless symposium, Chengdu, China, 2018: 1–3. doi: 10.1109/IEEE-IWS.2018.8400911.
    SMITH S L, DUNNING A, SMART K W, et al. Performance validation of the 19-element multibeam feed for the five-hundred-metre aperture spherical radio telescope[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 2137–2138.
    DUNNING A, BOWEN M, CASTILLO S, et al. Design and laboratory testing of the five hundred meter aperture spherical telescope (FAST) 19 beam L-band receiver[C]. The 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017. doi: 10.23919/URSIGASS.2017.8105012.
    LIU Lei and GRAINGE K. Realization of phased arrays for reflector observing systems[C]. The 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017. doi: 10.23919/URSIGASS.2017.8105014.
    HUT B, VAN DEN BRINK R H, and VAN CAPPELLEN W A. Status update on the system validation of APERTIF, the phased array feed system for the westerbork synthesis radio telescope[C]. The 2017 11th European Conference on Antennas and Propagation, Paris, France, 2017: 1960–1961. doi: 10.23919/EuCAP.2017.7928787.
    WU Yang, WARNICK K F, and JIN Chengjin. Design study of an L-band phased array feed for wide-field surveys and vibration compensation on FAST[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3026–3033. doi: 10.1109/TAP.2013.2254438
    IVASHINA M V, KEHN M N M, KILDAL P S, et al. Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays[C]. The 20061st European Conference on Antennas and Propagation, Nice, France, 2006: 1–6. doi: 10.1109/EUCAP.2006.4585045.
    IVASHINA M and VAN ARDENNE J D B A. A way to improve the field of view of the radiotelescope with a dense focal plane array[C]. The 12th International Conference Microwave and Telecommunication Technology, Sevastopol, Ukraine, 2002: 278–281. doi: 10.1109/CRMICO.2002.1137238.
    IVASHINA M and BREGMAN J. Experimental synthesis of a feed pattern with a dense focal plane array[C]. The 200232nd European Microwave Conference, Milan, Italy, 2002: 1–4. doi: 10.1109/EUMA.2002.339456.
    SHI Wei, ZHANG Quansheng, and DU Hui. Quantum particle swarm optimization for integer programming of phased array feeds[C]. 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2010: 1386–1389. doi: 10.1109/ICMMT.2010.5524774.
    CHANG D C, HU C N, HUNG C I, et al. Pattern synthesis of the offset reflector antenna system with less complicated phased array feed[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 240–245. doi: 10.1109/8.277218
    TANAKA S, YAMADA T, MURATA T, et al. A study on pattern synthesis method for array-fed reflector antenna for advanced direct broadcasting satellites[C]. 2001 IEEE Antennas and Propagation Society International Symposium, Boston, USA, 2001: 566–569. doi: 10.1109/APS.2001.958916.
    SAKA B and YAZGAN E. Pattern optimization of a reflector antenna with planar-array feeds and cluster feeds[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 93–97. doi: 10.1109/8.554245
    WHITE W D. Circular aperture distribution functions[J]. IEEE Transactions on Antennas and Propagation, 1977, 25(5): 714–716. doi: 10.1109/TAP.1977.1141672
    SKULKIN S P, TURCHIN V I, KASCHEEV N I, et al. Transient field calculation of aperture antennas for various field distributions over the aperture[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2295–2298. doi: 10.1109/LAWP.2017.2715323
    DUAN D W and RAHMAT-SAMII Y. A generalized three-parameter (3-P) aperture distribution for antenna applications[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6): 697–713. doi: 10.1109/8.144605
    IUPIKOV O A, IVASHINA M V, SKOU N, et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 737–748. doi: 10.1109/TAP.2017.2763174
    ELMER M, JEFFS B D, WARNICK K F, et al. Beamformer design methods for radio astronomical phased array feeds[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 903–914. doi: 10.1109/TAP.2011.2173143
    CHIPPENDALE A P, MCCONNELL D, BANNISTER K, et al. Recent developments in measuring signal and noise in phased array feeds at CSIRO[C]. The 201610th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481741.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (4654) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return