Citation: | Ruyan WANG, Hongjuan LI, Dapeng WU, Hongxia LI. Semi-Markov Decision Process-based Resource Allocation Strategy for Virtual Sensor Network[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3014-3021. doi: 10.11999/JEIT190016 |
YETGIN H, CHEUNG K T K, El-HAJJAR M, et al. A survey of network lifetime maximization techniques in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 828–854. doi: 10.1109/COMST.2017.2650979
|
WU Dapeng, ZHANG Feng, WANG Honggang, et al. Security-oriented opportunistic data forwarding in mobile social networks[J]. Future Generation Computer Systems, 2018, 87: 803–815. doi: 10.1016/j.future.2017.07.028
|
DELGADO C, CANALES M, ORTÍN J, et al. Joint application admission control and network slicing in virtual sensor networks[J]. IEEE Internet of Things Journal, 2018, 5(1): 28–43. doi: 10.1109/JIOT.2017.2769446
|
WU Dapeng, ZHANG Zhihao, WU Shaoen, et al. Biologically inspired resource allocation for network slices in 5G-enabled internet of things[J]. IEEE Internet of Things Journal, 2018. doi: 10.1109/JIOT.2018.2888543
|
GUO Lei, NING Zhaolong, SONG Qingyang, et al. A QoS-oriented high-efficiency resource allocation scheme in wireless multimedia sensor networks[J]. IEEE Sensors Journal, 2017, 17(5): 1538–1548. doi: 10.1109/JSEN.2016.2645709
|
ZHANG Yueyue, ZHU Yaping, YAN Feng, et al. Energy-efficient radio resource allocation in software-defined wireless sensor networks[J]. IET Communications, 2018, 12(3): 349–358. doi: 10.1049/iet-com.2017.0937
|
HASSAN M M and ALSANAD A. Resource provisioning for cloud-assisted software defined wireless sensor network[J]. IEEE Sensors Journal, 2016, 16(20): 7401–7408. doi: 10.1109/JSEN.2016.2582339
|
DELGADO C, GÁLLEGO J R, CANALES M, et al. On optimal resource allocation in virtual sensor networks[J]. Ad Hoc Networks, 2016, 50: 23–40. doi: 10.1016/j.adhoc.2016.04.004
|
WU Dapeng, LIU Qianru, WANG Honggang, et al. Cache less for more: Exploiting cooperative video caching and delivery in D2D communications[J]. IEEE Transactions on Multimedia, 2018. doi: 10.1109/TMM.2018.2885931
|
ZHENG Kan, MENG Hanlin, CHATZIMISIOS P, et al. An SMDP-based resource allocation in vehicular cloud computing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7920–7928. doi: 10.1109/TIE.2015.2482119
|
SCHOLLIG A, CAINES P E, EGERSTEDT M, et al. A hybrid Bellman equation for systems with regional dynamics[C]. The 200746th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 3393–3398. doi: 10.1109/CDC.2007.4434952.
|
GOSAVI A. Relative value iteration for average reward semi-Markov control via simulation[C]. 2013 Winter Simulations Conference, Washington, USA, 2013: 623–630. doi: 10.1109/WSC.2013.6721456.
|
WU Dapeng, SHI Hang, WANG Honggang, et al. A feature-based learning system for internet of things applications[J]. IEEE Internet of Things Journal, 2019, 6(2): 1928–1937. doi: 10.1109/JIOT.2018.2884485
|
CHEN Yueyun and JIA Cuixia. An improved call admission control scheme based on reinforcement learning for multimedia wireless networks[C]. 2009 International Conference on Wireless Networks and Information Systems, Shanghai, China, 2009: 322–325. doi: 10.1109/WNIS.2009.91.
|
ABUNDO M, DI VALERIO V, CARDELLINI V, et al. QoS-aware bidding strategies for VM spot instances: A reinforcement learning approach applied to periodic long running jobs[C]. 2015 IFIP/IEEE International Symposium on Integrated Network Management, Ottawa, Canada, 2015: 53–61. doi: 10.1109/INM.2015.7140276.
|
DARKEN C, CHANG J, and MOODY J. Learning rate schedules for faster stochastic gradient search[C]. 1992 IEEE Workshop on Neural Networks for Signal Processing II, Helsingoer, Denmark, 1992: 3–12. doi: 10.1109/NNSP.1992.253713.
|