Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Ruyan WANG, Hongjuan LI, Dapeng WU, Hongxia LI. Semi-Markov Decision Process-based Resource Allocation Strategy for Virtual Sensor Network[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3014-3021. doi: 10.11999/JEIT190016
Citation: Ruyan WANG, Hongjuan LI, Dapeng WU, Hongxia LI. Semi-Markov Decision Process-based Resource Allocation Strategy for Virtual Sensor Network[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3014-3021. doi: 10.11999/JEIT190016

Semi-Markov Decision Process-based Resource Allocation Strategy for Virtual Sensor Network

doi: 10.11999/JEIT190016
Funds:  The National Natural Science Foundation of China (61871062, 61771082), The Chongqing Funded Project of Chongqing University Innovation Team Construction (CXTDX201601020)
  • Received Date: 2019-01-07
  • Rev Recd Date: 2019-04-16
  • Available Online: 2019-05-22
  • Publish Date: 2019-12-01
  • The close relationship between resource deployment and specific tasks in traditional Wireless Sensor Network(WSN) leads to low resource utilization and revenue. According to the dynamic changes of Virtual Sensor Network Request(VSNR), the resource allocation strategy based on Semi-Markov Decision Process(SMDP) is proposed in Virtual Sensor Network(VSN). Then, difining the state, action, and transition probability of the VSN, the expected reward is given by considering the energy and time to complete the VSNR, and the model-free reinforcement learning approach is used to maximize the long-term reward of the network resource provider. The numerical results show that the resource allocation strategy of this paper can effectively improve the revenue of the sensor network resource providers.
  • loading
  • YETGIN H, CHEUNG K T K, El-HAJJAR M, et al. A survey of network lifetime maximization techniques in wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 828–854. doi: 10.1109/COMST.2017.2650979
    WU Dapeng, ZHANG Feng, WANG Honggang, et al. Security-oriented opportunistic data forwarding in mobile social networks[J]. Future Generation Computer Systems, 2018, 87: 803–815. doi: 10.1016/j.future.2017.07.028
    DELGADO C, CANALES M, ORTÍN J, et al. Joint application admission control and network slicing in virtual sensor networks[J]. IEEE Internet of Things Journal, 2018, 5(1): 28–43. doi: 10.1109/JIOT.2017.2769446
    WU Dapeng, ZHANG Zhihao, WU Shaoen, et al. Biologically inspired resource allocation for network slices in 5G-enabled internet of things[J]. IEEE Internet of Things Journal, 2018. doi: 10.1109/JIOT.2018.2888543
    GUO Lei, NING Zhaolong, SONG Qingyang, et al. A QoS-oriented high-efficiency resource allocation scheme in wireless multimedia sensor networks[J]. IEEE Sensors Journal, 2017, 17(5): 1538–1548. doi: 10.1109/JSEN.2016.2645709
    ZHANG Yueyue, ZHU Yaping, YAN Feng, et al. Energy-efficient radio resource allocation in software-defined wireless sensor networks[J]. IET Communications, 2018, 12(3): 349–358. doi: 10.1049/iet-com.2017.0937
    HASSAN M M and ALSANAD A. Resource provisioning for cloud-assisted software defined wireless sensor network[J]. IEEE Sensors Journal, 2016, 16(20): 7401–7408. doi: 10.1109/JSEN.2016.2582339
    DELGADO C, GÁLLEGO J R, CANALES M, et al. On optimal resource allocation in virtual sensor networks[J]. Ad Hoc Networks, 2016, 50: 23–40. doi: 10.1016/j.adhoc.2016.04.004
    WU Dapeng, LIU Qianru, WANG Honggang, et al. Cache less for more: Exploiting cooperative video caching and delivery in D2D communications[J]. IEEE Transactions on Multimedia, 2018. doi: 10.1109/TMM.2018.2885931
    ZHENG Kan, MENG Hanlin, CHATZIMISIOS P, et al. An SMDP-based resource allocation in vehicular cloud computing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7920–7928. doi: 10.1109/TIE.2015.2482119
    SCHOLLIG A, CAINES P E, EGERSTEDT M, et al. A hybrid Bellman equation for systems with regional dynamics[C]. The 200746th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 3393–3398. doi: 10.1109/CDC.2007.4434952.
    GOSAVI A. Relative value iteration for average reward semi-Markov control via simulation[C]. 2013 Winter Simulations Conference, Washington, USA, 2013: 623–630. doi: 10.1109/WSC.2013.6721456.
    WU Dapeng, SHI Hang, WANG Honggang, et al. A feature-based learning system for internet of things applications[J]. IEEE Internet of Things Journal, 2019, 6(2): 1928–1937. doi: 10.1109/JIOT.2018.2884485
    CHEN Yueyun and JIA Cuixia. An improved call admission control scheme based on reinforcement learning for multimedia wireless networks[C]. 2009 International Conference on Wireless Networks and Information Systems, Shanghai, China, 2009: 322–325. doi: 10.1109/WNIS.2009.91.
    ABUNDO M, DI VALERIO V, CARDELLINI V, et al. QoS-aware bidding strategies for VM spot instances: A reinforcement learning approach applied to periodic long running jobs[C]. 2015 IFIP/IEEE International Symposium on Integrated Network Management, Ottawa, Canada, 2015: 53–61. doi: 10.1109/INM.2015.7140276.
    DARKEN C, CHANG J, and MOODY J. Learning rate schedules for faster stochastic gradient search[C]. 1992 IEEE Workshop on Neural Networks for Signal Processing II, Helsingoer, Denmark, 1992: 3–12. doi: 10.1109/NNSP.1992.253713.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (2217) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return