Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Wenyi WU, Fangping ZHONG, Wanpeng WANG, Xihong CHEN, Dan ZHU. Real-time Estimation of Tropospheric Scattering Slant Delay of Low-elevation Obtained by Improved Ray Tracing[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2366-2372. doi: 10.11999/JEIT190014
Citation: Wenyi WU, Fangping ZHONG, Wanpeng WANG, Xihong CHEN, Dan ZHU. Real-time Estimation of Tropospheric Scattering Slant Delay of Low-elevation Obtained by Improved Ray Tracing[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2366-2372. doi: 10.11999/JEIT190014

Real-time Estimation of Tropospheric Scattering Slant Delay of Low-elevation Obtained by Improved Ray Tracing

doi: 10.11999/JEIT190014
Funds:  The National Natural Science Foundation of China (611701525)
  • Received Date: 2019-01-07
  • Rev Recd Date: 2019-04-23
  • Available Online: 2019-04-29
  • Publish Date: 2019-10-01
  • Considering the disadvantage of oblique delay estimation of tropospheric scattering at arbitrary stations, which is difficult to obtain real-time sounding meteorological data, an oblique delay estimation algorithm of tropospheric scattering based on improved ray tracing method with ground meteorological parameters is proposed. In order to get rid of the method’s dependence on radiosonde data, the algorithm infers the relationship between refractive index and altitude through the formula of meteorological parameters in the model of medium latitude atmosphere. The interpolation of meteorological parameters in the model of UNB3m is used to gain the coefficient of temperature and water vapor pressure. Meteorological data for 2012 from 6 International GNSS Service (IGS) stations in Asia are selected to test the applicability of new method, the results suggest that precision is less than 1 cm. Then, the tropospheric slant delays of three parts observation stations under different angles of incidence (0°~5°) are calculated by the modified algorithm. The results suggest that the maximum delay is 17.03~33.10 m in a single way time transfer. In two way time transfer, when the delay can counteract 95%, time delay is 2.88~5.52 ns.
  • loading
  • PAN Minghai, HAN Qinghua, GONG Shufeng, et al. Impacts of space-time-frequency synchronization errors onwideband target echo characteristics of bistatic/multistatic radar[J]. Journal of Systems Engineering and Electronics, 2016, 27(3): 562–573. doi: 10.1109/JSEE.2016.00060
    万显荣, 孙绪望, 易建新, 等. 分布式数字广播电视外辐射源雷达系统同步设计与测试[J]. 雷达学报, 2017, 6(1): 65–72. doi: 10.12000/JR16134

    WAN Xianrong, SUN Xuwang, YI Jianxin, et al. Synchronous design and test of distributed passive radar systems based on digital broadcasting and television[J]. Journal of Radars, 2017, 6(1): 65–72. doi: 10.12000/JR16134
    WANG Zhengbo, ZHAO Lu, WANG Shiguang, et al. COMPASS time synchronization and dissemination-Toward centimetre positioning accuracy[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(9): 1788–1804. doi: 10.1007/s11433-014-5508-z
    CHEN Xihong, LIU Qiang, HU Denghua, et al. Delay analysis of two way time transfer based on troposphere gradients[C]. The 10th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 2014: 543–547.
    HUANG Yijun, FUJIEDA M, TAKIGUCHI H, et al. Stability improvement of an operational two-way satellite time and frequency transfer system[J]. Metrologia, 2016, 53(2): 881–890. doi: 10.1088/0026-1394/53/2/881
    SLIWCZYNSKI L, KREHLIK P, KOLODZIEJ J, et al. Fiber-optic time transfer for UTC-traceable synchronization for telecom networks[J]. IEEE Communications Standards Magazine, 2017, 1(1): 66–73. doi: 10.1109/MCOMSTD.2017.1600766ST
    刘强, 陈西宏, 薛伦生, 等. 基于映射函数的对流层双向时间比对斜延迟分析[J]. 电子科技大学学报, 2015, 44(5): 689–694. doi: 10.3969/j.issn.1001-0548.2015.05.009

    LIU Qiang, CHEN Xihong, XUE Lunsheng, et al. Slant propagation delay analysis in two way troposphere transfer based on mapping function[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(5): 689–694. doi: 10.3969/j.issn.1001-0548.2015.05.009
    王红光, 吴振森, 朱庆林. 大气折射对雷达低仰角跟踪误差的影响分析[J]. 电子与信息学报, 2012, 34(8): 1893–1896. doi: 10.3724/SP.J.1146.2011.01186

    WANG Hongguang, WU Zhensen, and ZHU Qinglin. Influence analysis of atmospheric refraction on low-angle radar tracking errors[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1893–1896. doi: 10.3724/SP.J.1146.2011.01186
    乔江, 杜晓燕, 卫佩佩. 一种对流层折射误差的实时简化修正方法[J]. 强激光与粒子束, 2018, 30(10): 103205. doi: 10.11884/HPLPB201830.180146

    QIAO Jiang, DU Xiaoyan, and WEI Peipei. Real-time simplified correction method for tropospheric refraction error[J]. High Power Laser and Particle Beams, 2018, 30(10): 103205. doi: 10.11884/HPLPB201830.180146
    吴文溢, 陈西宏, 刘少伟. 低仰角对流层散射斜延迟实时估计方法[J]. 电子与信息学报, 2017, 39(6): 1326–1332. doi: 10.11999/JEIT160776

    WU Wenyi, CHEN Xihong, and LIU Shaowei. Real-time estimation method for tropospheric scatter slant delay at low elevation[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1326–1332. doi: 10.11999/JEIT160776
    卫佩佩, 杜晓燕, 江长荫. 基于射线描迹法微分形式的大气折射误差修正方法研究[J]. 电子与信息学报, 2018, 40(8): 1838–1846. doi: 10.11999/JEIT171131

    WEI Peipei, DU Xiaoyan, and JIANG Changyin. Atmosphere refractive error correction method based on ray tracing differential form[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1838–1846. doi: 10.11999/JEIT171131
    陈西宏, 刘赞, 刘继业, 等. 低仰角下对流层散射斜延迟估计方法[J]. 电子与信息学报, 2016, 38(2): 408–412. doi: 10.11999/JEIT150628

    CHEN Xihong, LIU Zan, LIU Jiye, et al. Estimating tropospheric slant scatter delay at low elevation[J]. Journal of Electronics &Information Technology, 2016, 38(2): 408–412. doi: 10.11999/JEIT150628
    刘继业, 陈西宏, 刘赞. 对流层散射双向时间比对中对流层斜延迟实时估计[J]. 电子与信息学报, 2018, 40(3): 587–593. doi: 10.11999/JEIT170581

    LIU Jiye, CHEN Xihong, and LIU Zan. Real-time estimation of tropospheric slant delay in two-way troposphere time transfer[J]. Journal of Electronics &Information Technology, 2018, 40(3): 587–593. doi: 10.11999/JEIT170581
    卫佩佩, 杜晓燕, 江长荫. 对流层散射超视距信道传输损耗快慢衰落特性研究[J]. 电子与信息学报, 2018, 40(7): 1745–1751. doi: 10.11999/JEIT170952

    WEI Peipei, DU Xiaoyan, and JIANG Changyin. Study on tropospheric scatter beyond-line-of-sight channel transmission loss for short-term and long-term fading[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1745–1751. doi: 10.11999/JEIT170952
    ERIKSSON D, MACMILLAN D S, and GIPSON J M. Tropospheric delay ray tracing applied in VLBI analysis[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 9156–9170. doi: 10.1002/2014JB011552
    LEANDRO R F, LANGLEY R B, and SANTOS M C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques[J]. GPS Solutions, 2008, 12(1): 65–70. doi: 10.1007/s10291-007-0077-5
    孔建, 姚宜斌, 单路路, 等. GPT2w模型在南极地区精度分析[J]. 测绘学报, 2018, 47(10): 1316–1325. doi: 10.11947/j.AGCS.2018.20170487

    KONG Jian, YAO Yibin, SHAN Lulu, et al. The accuracy analysis of GPT2w at the Antarctic area[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1316–1325. doi: 10.11947/j.AGCS.2018.20170487
    姚宜斌, 徐星宇, 胡羽丰. GGOS对流层延迟产品精度分析及在PPP中的应用[J]. 测绘学报, 2017, 46(3): 278–287. doi: 10.11947/j.AGCS.2017.20160383

    YAO Yibin, XU Xingyu, and HU Yufeng. Precision analysis of GGOS tropospheric delay Product and its application in PPP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 278–287. doi: 10.11947/j.AGCS.2017.20160383
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (2273) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return