Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Yinghui QUAN, Xiada CHEN, Feng RUAN, Xia GAO, Yachao LI, Mengdao XING. An Anti-Dense False Target Jamming Algorithm Based on Agile Frequency Joint Hough Transform[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2639-2645. doi: 10.11999/JEIT190010
Citation: Yinghui QUAN, Xiada CHEN, Feng RUAN, Xia GAO, Yachao LI, Mengdao XING. An Anti-Dense False Target Jamming Algorithm Based on Agile Frequency Joint Hough Transform[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2639-2645. doi: 10.11999/JEIT190010

An Anti-Dense False Target Jamming Algorithm Based on Agile Frequency Joint Hough Transform

doi: 10.11999/JEIT190010
Funds:  The National Natural Science Foundation of China(61303035, 61772397), The Fundamental Research Funds for the Central University; The Innovation Fund of Xidian University
  • Received Date: 2019-01-07
  • Rev Recd Date: 2019-05-08
  • Available Online: 2019-05-24
  • Publish Date: 2019-11-01
  • Forwarding dense false target jamming disturbs the detection and recognition of real targets by generating multiple false targets in the range dimension. Because the false echo signal is highly correlated with the real signal, it is difficult for radar to recognize and suppress it effectively. Frequency agile radar improves greatly the low interception and anti-jamming ability of radar by randomly changing the carrier frequency of transmitting adjacent pulses. However, agile radar can not completely eliminate the interference, some target echo pulses may be submerged by the interference, agile radar can not complete coherent accumulation and target detection well either. To solve the above problems, an anti-jamming method of frequency agility combined with Hough transform is proposed. Firstly, the inter-pulse frequency agility technology is used to avoid most narrowband aiming and deceptive jamming. Then, according to the time discontinuity of the jamming signal, Hough transform and peak extraction are used to identify and suppress the jamming. Frequency agility is incompatible with the traditional Moving Target Detection(MTD). Target detection is accomplished by sparse reconstruction. The simulation and actual radar and jammer countermeasure experiments show that the proposed method can achieve good anti-jamming performance and target detection performance.
  • loading
  • SHI Xiaoran, ZHOU Feng, ZHAO Bo, et al. Deception jamming method based on micro-Doppler effect for vehicle target[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1071–1079. doi: 10.1049/iet-rsn.2015.0371
    FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958
    ZHOU Chang, TANG Ziyue, DAI Yu, et al. Anti-intermittent sampling repeater jamming method based on convex optimization techniques[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059595.
    冯德军, 王俊杰, 王俊卿. 移频导前假目标的特性分析及其鉴别方法[J]. 雷达学报, 2017, 6(4): 325–331. doi: 10.12000/JR17026

    FENG Dejun, WANG Junjie, and WANG Junqing. Signature analysis and discrimination method of preceded Frequency-shift false target[J]. Journal of Radars, 2017, 6(4): 325–331. doi: 10.12000/JR17026
    SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. doi: 10.1109/TAES.2006.1603414
    ZHANG Shuning, XIE Wei, ZHU Hang, et al. Combined eigenvector analysis and independent component analysis for multi-component periodic interferences suppression in PRCPM-PD detection system[J]. IEEE Access, 2017, 5: 12552–12562. doi: 10.1109/ACCESS.2017.2720589
    MUSUMECI L, CURRAN J T, and DOVIS F. A comparative analysis of adaptive notch filtering and wavelet mitigation against jammers interference[J]. Navigation, 2016, 63(4): 533–550. doi: 10.1002/navi.167
    SHEN Hao and PAPANDREOU-SUPPAPPOLA A. Wideband time-varying interference suppression using matched signal transforms[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2607–2612. doi: 10.1109/TSP.2005.849218
    WANG Dinghe, BAO Qinglong, NIU Zhaodong, et al. Long time coherent integration method for frequency agile radar[C]. The 11th European Radar Conference, Rome, Italy, 2014: 553–556. doi: 10.1109/EuRAD.2014.6991330.
    QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
    卢刚, 唐斌, 罗双才, 等. LFM雷达中DRFM假目标自适应对消方法[J]. 系统工程与电子技术, 2011, 33(8): 1760–1764. doi: 10.3969/j.issn.1001-506X.2011.08.16

    LU Gang, TANG Bin, LUO Shuangcai, et al. Adaptive cancellation of DRFM false targets for LFM radar[J]. Systems Engineering and Electronics, 2011, 33(8): 1760–1764. doi: 10.3969/j.issn.1001-506X.2011.08.16
    孙丰荣, 刘积仁. 快速霍夫变换算法[J]. 计算机学报, 2001, 24(10): 1102–1109. doi: 10.3321/j.issn:0254-4164.2001.10.013

    SUN Fengrong and LIU Jiren. Fast Hough transform algorithm[J]. Chinese Journal of Computers, 2001, 24(10): 1102–1109. doi: 10.3321/j.issn:0254-4164.2001.10.013
    刘向阳, 杨君刚, 孟进, 等. 低信噪比下基于Hough变换的前视阵列SAR稀疏三维成像[J]. 雷达学报, 2017, 6(3): 316–323. doi: 10.12000/JR17011

    LIU Xiangyang, YANG Jungang, MENG Jin, et al. Sparse Three-dimensional imaging based on hough transform for Forward-looking array SAR in low SNR[J]. Journal of Radars, 2017, 6(3): 316–323. doi: 10.12000/JR17011
    STEIN J J and BLACKMAN S S. Generalized correlation of multi-target track data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, AES-11(6): 1207–1217. doi: 10.1109/TAES.1975.308178
    QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700
    HUANG Tianyao, LIU Yimin, MENG Huadong, et al. Randomized step frequency radar with adaptive compressed sensing[C]. 2011 IEEE RadarCon, Kansas City, USA, 2011: 411–414. doi: 10.1109/RADAR.2011.5960571.
    陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiaolong, GUAN Jian, HE You, et al. Sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    MARQUES E C, MACIEL N, NAVINER L, et al. A review of sparse recovery algorithms[J]. IEEE Access, 2019, 7: 1300–1322. doi: 10.1109/ACCESS.2018.2886471
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (3134) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return