Citation: | Lun TANG, Jiao XIAO, Guofan ZHAO, Youchao YANG, Qianbin CHEN. Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(2): 526-533. doi: 10.11999/JEIT190006 |
In the Non-Orthogonal Multiple Access (NOMA) based cellular network with Vehicle-to-Vehicle (V2V) communication, to mitigate the co-channel interference between V2V users and cellular users as well as the power allocation problem based on the NOMA principle, an energy efficiency dynamic resource allocation algorithm is proposed. Firstly, a stochastic optimization model is established to maximize the energy efficiency by considering subchannel scheduling, power allocation and congestion control, in order to guarantee the delay and reliability of V2V users while satisfying the rate of cellular users. Then, leveraging on the Lyapunov stochastic optimization method, the traffic queues can be stabilized by admitting as much traffic data as possible to avoid network congestion, and the radio resource can be allocated dynamically according to the real-time network traffic and thus a suboptimal subchannel matching algorithm is designed to obtain the user scheduling scheme. Furthermore, the power allocation policy is obtained by utilizing successive convex optimization theory and Lagrange dual decomposition method. Finally, the simulation results show that the proposed algorithm can improve the system energy efficiency and ensure the Quality of Service (QoS) requirements of different users and network stability.
3GPP. Study on LTE-based V2X services 14.0.0[R]. 3GPP TR 36.885, 2016.
|
3GPP. Study on enhancement of 3GPP support for 5G V2X services 16.2.0[R]. 3GPP TR 22.886, 2017.
|
SAHIN T, KLUGEL M, ZHOU Chan, et al. Virtual cells for 5G V2X communications[J]. IEEE Communications Standards Magazine, 2018, 2(1): 22–28. doi: 10.1109/MCOMSTD.2018.1700060
|
YANG Zhaohui, XU Wei, PAN Cunhua, et al. On the optimality of power allocation for NOMA downlinks with individual QoS constraints[J]. IEEE Communications Letters, 2017, 21(7): 1649–1652. doi: 10.1109/LCOMM.2017.2689763
|
PAN Yijin, PAN Cunhua, YANG Zhaohui, et al. Resource allocation for D2D communications underlaying a NOMA-based cellular network[J]. IEEE Wireless Communications Letters, 2018, 7(1): 130–133. doi: 10.1109/LWC.2017.2759114
|
LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194
|
LIU Chenfeng and BENNIS M. Ultra-reliable and low-latency vehicular transmission: An extreme value theory approach[J]. IEEE Communications Letters, 2018, 22(6): 1292–1295. doi: 10.1109/LCOMM.2018.2828407
|
SUN Wanlu, STRÖM E, BRÄNNSTRÖM F, et al. Radio resource management for D2D-based V2V communication[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6636–6650. doi: 10.1109/TVT.2015.2479248
|
SUN Wanlu, STRÖM E, BRÄNNSTRÖM F, et al. D2D-based V2V communications with latency and reliability constraints[C]. 2014 IEEE Globecom Workshops, Austin, USA, 2014: 1414–1419. doi: 10.1109/GLOCOMW.2014.7063632.
|
PENG Mugen, YU Yuling, XIANG Hongyu, et al. Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks[J]. IEEE Transactions on Multimedia, 2016, 18(5): 879–892. doi: 10.1109/TMM.2016.2535722
|
LAU V K N, ZHANG Fan, and CUI Ying. Low complexity delay-constrained beamforming for multi-user MIMO systems with imperfect CSIT[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 4090–4099. doi: 10.1109/TSP.2013.2264058
|
CHUNG S T and GOLDSMITH A J. Degrees of freedom in adaptive modulation: A unified view[J]. IEEE Transactions on Communications, 2001, 49(9): 1561–1571. doi: 10.1109/26.950343
|
LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184
|
ZHAO Long and WANG Xiaodong. Round-trip energy efficiency of wireless energy powered massive MIMO system with latency constraint[J]. IEEE Communications Letters, 2017, 21(1): 12–15. doi: 10.1109/LCOMM.2016.2616858
|
KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi: 10.1109/ACCESS.2019.2892180
|
ZHANG Yi, WANG Huiming, ZHENG Tongxing, et al. Energy-efficient transmission design in non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2852–2857. doi: 10.1109/TVT.2016.2578949
|