Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Xiaohan WANG, Tao WANG, Xiongwei LI, Yang ZHANG, Changyang HUANG. A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3043-3050. doi: 10.11999/JEIT190004
Citation: Xiaohan WANG, Tao WANG, Xiongwei LI, Yang ZHANG, Changyang HUANG. A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3043-3050. doi: 10.11999/JEIT190004

A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis

doi: 10.11999/JEIT190004
Funds:  The National Natural Science Foundation of China (61602505)
  • Received Date: 2019-01-03
  • Rev Recd Date: 2019-03-14
  • Available Online: 2019-05-28
  • Publish Date: 2019-12-01
  • Against the problem of low detection rate to detect small hardware Trojan by side-channel in physical environment, the Marginal Fisher Analysis (MFA) is introduced. On the basis, a hardware Trojan detection method based on Compression Marginal Fisher Analysis (CMFA) is proposed. The projection space is constructed by reducing the distance between the sample and its same neighbor samples, and the distance between the same neighbor samples and the center of the same kind, and increasing the distance between the same neighbor samples of the center and the sample in different kind. Thus, the difference in the original data is found without any assumptions about data distribution, and the detection of hardware Trojan is achieved. The hardware Trojan detection experiment in AES encryption circuit shows that this method can effectively distinguish the statistical difference in side-channel signal between reference chip and Trojan chip and detect the hardware Trojan whose scale is 0.04% of the original circuit.
  • loading
  • DOFE J, FREY J, and YU Qiaoyu. Hardware security assurance in emerging IoT applications[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2050–2053.
    SUMATHI G, SRIVANI L, MURTHY D T, et al. A review on HT attacks in PLD and ASIC designs with potential defence solutions[J]. IETE Technical Review, 2018, 35(1): 64–77. doi: 10.1080/02564602.2016.1246385
    CHAKRABORTY R S, WOLFF F, PAUL S, et al. MERO: A statistical approach for hardware Trojan detection[C]. The 11th International Workshop on Cryptographic Hardware and Embedded Systems, Switzerland, 2009: 396–410.
    SAHA S, CHAKRABORTY R S, NUTHAKKI S S, et al. Improved test pattern generation for hardware Trojan detection using genetic algorithm and Boolean satisfiability[C]. The 17th International Workshop on Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015: 577–596.
    LESPERANCE N, KULKARNI S, CHENG K T, et al. Hardware Trojan detection using exhaustive testing of k-bit subspaces[C]. The 20th Asia and South Pacific Design Automation Conference, Chiba, Japan, 2015: 755–760.
    XUE Mingfu, HU Aiqun, and LI Guyue. Detecting hardware Trojan through heuristic partition and activity driven test pattern generation[C]. 2014 Communications Security Conference, Beijing, China, 2014: 1–6.
    AGRAWAL D, BAKTIR S, KARAKOYUNLU D, et al. Trojan detection using IC fingerprinting[C]. 2007 IEEE Symposium on Security and Privacy, Berkeley, USA, 2007: 296–310.
    HE Jiaji, ZHAO Yiqiang, GUO Xiaolong, et al. Hardware Trojan detection through chip-free electromagnetic side-channel statistical analysis[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(10): 2939–2948. doi: 10.1109/TVLSI.2017.2727985
    XIAO Kan, ZHANG Xuehui, and TEHRANIPOOR M. A clock sweeping technique for detecting hardware trojans impacting circuits delay[J]. IEEE Design & Test, 2013, 30(2): 26–34. doi: 10.1109/MDAT.2013.2249555
    薛明富, 王箭, 胡爱群. 自适应优化的二元分类型硬件木马检测方法[J]. 计算机学报, 2018, 41(2): 439–451. doi: 10.11897/SP.J.1016.2018.00439

    XUE Mingfu, WANG Jian, and HU Aiqun. Adaptive optimization of two-class classification-based hardware Trojan detection method[J]. Chinese Journal of Computers, 2018, 41(2): 439–451. doi: 10.11897/SP.J.1016.2018.00439
    骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法[J]. 物理学报, 2016, 65(11): 110602. doi: 10.7498/APS.65.110602

    LUO Yang and WANG Yanan. Physical hardware trojan failure analysis and detection method[J]. Acta Physica Sinica, 2016, 65(11): 110602. doi: 10.7498/APS.65.110602
    张鹏, 王新成, 周庆. 基于投影寻踪分析的芯片硬件木马检测[J]. 通信学报, 2013, 34(4): 122–126. doi: 10.3969/J.ISSN.1000-436x.2013.04.014

    ZHANG Peng, WANG Xincheng, and ZHOU Qing. Hardware Trojans detection based on projection pursuit[J]. Journal on Communications, 2013, 34(4): 122–126. doi: 10.3969/J.ISSN.1000-436x.2013.04.014
    李雄伟, 王晓晗, 张阳, 等. 一种基于核最大间距准则的硬件木马检测新方法[J]. 电子学报, 2017, 45(3): 656–661. doi: 10.3969/J.ISSN.0372-2112.2017.03.023

    LI Xiongwei, WANG Xiaohan, ZHANG Yang, et al. A new hardware Trojan detection method based on kernel maximum margin criterion[J]. Acta Electronica Sinica, 2017, 45(3): 656–661. doi: 10.3969/J.ISSN.0372-2112.2017.03.023
    赵毅强, 刘沈丰, 何家骥, 等. 基于自组织竞争神经网络的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2016, 44(2): 51–55. doi: 10.13245/J.HUST.160211

    ZHAO Yiqiang, LIU Shenfeng, HE Jiaji, et al. Hardware Trojan detection technology based on self-organizing competition neural network[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2016, 44(2): 51–55. doi: 10.13245/J.HUST.160211
    YAN Shuicheng, XU Dong, ZHANG Benyu, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40–51. doi: 10.1109/TPAMI.2007.250598
    何进荣, 丁立新, 崔梦天, 等. 基于矩阵指数变换的边界Fisher分析[J]. 计算机学报, 2014, 37(10): 2196–2205.

    HE Jinrong, DING Lixin, CUI Mengtian, et al. Marginal Fisher analysis based on matrix exponential transformation[J]. Chinese Journal of Computers, 2014, 37(10): 2196–2205.
    李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673–688. doi: 10.13195/J.KZYJC.2018.0865

    LI Yanxia, CHAI Yi, HU Youqiang, et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34(4): 673–688. doi: 10.13195/J.KZYJC.2018.0865
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (2213) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return