Citation: | Xia FENG, Ling TANG, Min LU. Research on Shift Generation of Foreign Airlines Service Personnel Based on Tabu Search Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2715-2721. doi: 10.11999/JEIT181196 |
KYNGÄS N, NURMI K, KYNGÄS J, et al. Solving the person-based multitask shift generation problem with breaks[C]. The 5th International Conference on Modeling, Simulation and Applied Optimization, Hammamet, Tunisia, 2013: 1–8.
|
BRUCKER P, QU Rong, and BURKE E. Personnel scheduling: Models and complexity[J]. European Journal of Operational Research, 2011, 210(3): 463–473. doi: 10.1016/j.ejor.2010.11.017
|
REID K N, LI Jingpeng, SWAN J, et al. Variable neighbourhood search: A case study for a highly-constrained workforce scheduling problem[C]. 2016 IEEE Symposium Series on Computational Intelligence, Athens, Greece, 2016: 1–6.
|
ERNST AT, JIANG H, KRISHNAMOORTHY M, et al. Staff scheduling and rostering: A review of applications, methods and models[J]. European Journal of Operational Research, 2002, 153(1): 3–27. doi: 10.1016/s0377-2217(03)00095-x
|
MA Jinghua, CHEN H H, SONG Lingyang, et al. Residential load scheduling in smart grid: A cost efficiency perspective[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 771–784. doi: 10.1109/TSG.2015.2419818
|
PENG Kunkun and SHEN Yindong. Hybrid variable neighbourhood search for multi-objective bus driver rostering[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(6): 3989–3996. doi: 10.1166/jctn.2016.5238
|
PENG Kunkun and SHEN Yindong. An evolutionary algorithm based on grey relational analysis for crew scheduling[J]. Journal of Grey System, 2016, 28(3): 75–88.
|
YAGHINI M, KARIMI M, and RAHBAR M. A set covering approach for multi-depot train driver scheduling[J]. Journal of Combinatorial Optimization, 2015, 29(3): 636–654. doi: 10.1007/s10878-013-9612-1
|
RAHIMIAN E, AKARTUNALI K, and LEVINE J. A hybrid integer programming and variable neighbourhood search algorithm to solve nurse rostering problems[J]. European Journal of Operational Research, 2016, 258(2): 411–423. doi: 10.1016/j.ejor.2016.09.030
|
ZAMORANO E, BECKER A, and STOLLETZ R. Task assignment with start time-dependent processing times for personnel at check-in counters[J]. Journal of Scheduling, 2018, 21(1): 93–109. doi: 10.1007/s10951-017-0523-3
|
ZEREN B and ÖZKOL I. A novel column generation strategy for large scale airline crew pairing problems[J]. Expert Systems with Applications, 2016, 55: 133–144. doi: 10.1016/j.eswa.2016.01.045
|
CHURCH R L and REVELLE C S. Theoretical and computational links between the p-median, location set-covering, and the maximal covering location problem[J]. Geographical Analysis, 1976, 8(4): 406–415. doi: 10.1111/j.1538-4632.1976.tb00547.x
|
XIA Yangkun, FU Zhuo, PAN Lijun, et al. Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order[J]. PLoS One, 2018, 13(5): e0195457. doi: 10.1371/journal.pone.0195457
|
BU Henan, YAN Zhuwen, ZHANG Dianhua, et al. Application of case-based reasoning-Tabu search hybrid algorithm for rolling schedule optimization in tandem cold rolling[J]. Engineering Computations, 2018, 35(1): 187–201. doi: 10.1108/EC-02-2017-0054
|
MONTANÉ F A T and GALVÃO R D. A Tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service[J]. Computers & Operations Research, 2006, 33(3): 595–619. doi: 10.1016/j.cor.2004.07.009
|