Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Xia FENG, Ling TANG, Min LU. Research on Shift Generation of Foreign Airlines Service Personnel Based on Tabu Search Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2715-2721. doi: 10.11999/JEIT181196
Citation: Xia FENG, Ling TANG, Min LU. Research on Shift Generation of Foreign Airlines Service Personnel Based on Tabu Search Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2715-2721. doi: 10.11999/JEIT181196

Research on Shift Generation of Foreign Airlines Service Personnel Based on Tabu Search Algorithm

doi: 10.11999/JEIT181196
Funds:  The National Natural Science Foundation of China (61502499), The Civil Aviation Key Technologies R&D Program of China (MHRD20140105), The Open Project in Key Laboratory of Machine Intelligence and Advanced Computing of the Ministry of Education (Sun Yat-sen University) (MSC-201704A), The Fundamental Research Funds for the Central Universities of China (3122015D015)
  • Received Date: 2019-01-03
  • Rev Recd Date: 2019-04-17
  • Available Online: 2019-05-21
  • Publish Date: 2019-11-01
  • To solve the problem for the large amount of tasks, complex constraint conditions and manual which is hard to generation shifts of airport foreign airline service personnel. A shift generation model is studied and constructed for multi-task hierarchical qualification which including employees have hierarchical qualifications for tasks and shift needs to meet all kinds of labor laws and regulations and others constraints to minimize the total working time of shifts for optimum. Tabu search algorithm is designed to solve the model. Experiments, based on the actual scheduling data set of the foreign airlines service department of capital airport, verify the practicability and effectiveness of the model and the algorithm. The results show that compared to the existing manual shifts schemes, shifts obtained by using the model can fulfill all constraint conditions, shorten the total working time, reduce the number of employees and improve the utilization rate of airport resources.
  • loading
  • KYNGÄS N, NURMI K, KYNGÄS J, et al. Solving the person-based multitask shift generation problem with breaks[C]. The 5th International Conference on Modeling, Simulation and Applied Optimization, Hammamet, Tunisia, 2013: 1–8.
    BRUCKER P, QU Rong, and BURKE E. Personnel scheduling: Models and complexity[J]. European Journal of Operational Research, 2011, 210(3): 463–473. doi: 10.1016/j.ejor.2010.11.017
    REID K N, LI Jingpeng, SWAN J, et al. Variable neighbourhood search: A case study for a highly-constrained workforce scheduling problem[C]. 2016 IEEE Symposium Series on Computational Intelligence, Athens, Greece, 2016: 1–6.
    ERNST AT, JIANG H, KRISHNAMOORTHY M, et al. Staff scheduling and rostering: A review of applications, methods and models[J]. European Journal of Operational Research, 2002, 153(1): 3–27. doi: 10.1016/s0377-2217(03)00095-x
    MA Jinghua, CHEN H H, SONG Lingyang, et al. Residential load scheduling in smart grid: A cost efficiency perspective[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 771–784. doi: 10.1109/TSG.2015.2419818
    PENG Kunkun and SHEN Yindong. Hybrid variable neighbourhood search for multi-objective bus driver rostering[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(6): 3989–3996. doi: 10.1166/jctn.2016.5238
    PENG Kunkun and SHEN Yindong. An evolutionary algorithm based on grey relational analysis for crew scheduling[J]. Journal of Grey System, 2016, 28(3): 75–88.
    YAGHINI M, KARIMI M, and RAHBAR M. A set covering approach for multi-depot train driver scheduling[J]. Journal of Combinatorial Optimization, 2015, 29(3): 636–654. doi: 10.1007/s10878-013-9612-1
    RAHIMIAN E, AKARTUNALI K, and LEVINE J. A hybrid integer programming and variable neighbourhood search algorithm to solve nurse rostering problems[J]. European Journal of Operational Research, 2016, 258(2): 411–423. doi: 10.1016/j.ejor.2016.09.030
    ZAMORANO E, BECKER A, and STOLLETZ R. Task assignment with start time-dependent processing times for personnel at check-in counters[J]. Journal of Scheduling, 2018, 21(1): 93–109. doi: 10.1007/s10951-017-0523-3
    ZEREN B and ÖZKOL I. A novel column generation strategy for large scale airline crew pairing problems[J]. Expert Systems with Applications, 2016, 55: 133–144. doi: 10.1016/j.eswa.2016.01.045
    CHURCH R L and REVELLE C S. Theoretical and computational links between the p-median, location set-covering, and the maximal covering location problem[J]. Geographical Analysis, 1976, 8(4): 406–415. doi: 10.1111/j.1538-4632.1976.tb00547.x
    XIA Yangkun, FU Zhuo, PAN Lijun, et al. Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order[J]. PLoS One, 2018, 13(5): e0195457. doi: 10.1371/journal.pone.0195457
    BU Henan, YAN Zhuwen, ZHANG Dianhua, et al. Application of case-based reasoning-Tabu search hybrid algorithm for rolling schedule optimization in tandem cold rolling[J]. Engineering Computations, 2018, 35(1): 187–201. doi: 10.1108/EC-02-2017-0054
    MONTANÉ F A T and GALVÃO R D. A Tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service[J]. Computers & Operations Research, 2006, 33(3): 595–619. doi: 10.1016/j.cor.2004.07.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (2807) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return