Advanced Search
Volume 41 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
Huijie LIU, Xinhai GAO, Rujiang GUO. A Time-frequency Analysis Method for Linear Frequency Modulation Signal with Low Sidelobe and Nonaliasing Property[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2614-2622. doi: 10.11999/JEIT181190
Citation: Huijie LIU, Xinhai GAO, Rujiang GUO. A Time-frequency Analysis Method for Linear Frequency Modulation Signal with Low Sidelobe and Nonaliasing Property[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2614-2622. doi: 10.11999/JEIT181190

A Time-frequency Analysis Method for Linear Frequency Modulation Signal with Low Sidelobe and Nonaliasing Property

doi: 10.11999/JEIT181190
Funds:  The National Natural Science Foundation of China (91738201), Shanghai Sailing Program (17YF1418200)
  • Received Date: 2018-12-28
  • Rev Recd Date: 2019-05-27
  • Available Online: 2019-08-23
  • Publish Date: 2019-11-01
  • Chirp signals are widely used in communication and exploration. The parameter analysis of the chirp signals often uses a Wigner-Ville Distribution (WVD) based time-frequency analysis method, which achieves high time-frequency resolution. However, this method has defects in cross terms, high sidelobes, and spectral aliasing problems. To solve these problems, a time-frequency analysis method called Spatially Variant Apodiztion-rearrange Wigner Ville Distribution (SVA-rWVD) is proposed, which achieves low sidelobes by exploiting the Spatially Variant Apodization (SVA) techniques, and avoids the cross terms and the spectral aliasing problems by applying the Short Time Fourier Transform (STFT). Furthermore, a new time-frequency distribution is obtained from the proposed method. Extensive simulations show that the time-frequency distribution obtained by the proposed method not only reduces the sidelobe level to –40 dB but also eliminates cross terms and spectral aliasing for both single-component and multi-component chirp signals.
  • loading
  • YI Wei, CHEN Zhenhua, HOSEINNEZHAD R, et al. Joint estimation of location and signal parameters for an LFM emitter[J]. Signal Processing, 2017, 134: 100–112. doi: 10.1016/j.sigpro.2016.11.014
    李秀坤, 吴玉双. 多分量线性调频信号的Wigner-Ville分布交叉项去除[J]. 电子学报, 2017, 45(2): 315–320. doi: 10.3969/j.issn.0372-2112.2017.02.008

    LI Xiukun and WU Yushuang. Cross-term removal of Wigner-Ville distribution for multi-component LFM signals[J]. Acta Electronica Sinica, 2017, 45(2): 315–320. doi: 10.3969/j.issn.0372-2112.2017.02.008
    KUMAR R, ZHAO Wei, and SINGH V. Joint time-frequency analysis of seismic signals: A critical review[J]. Structural Durability & Health Monitoring, 2018, 12(2): 65–83. doi: 10.3970/sdhm.2018.02329
    邹红星, 戴琼海, 李衍达, 等. 不含交叉项干扰且具有WVD聚集性的时频分布之不存在性[J]. 中国科学: E辑, 2002, 45(3): 174–180. doi: 10.1360/02yf9015

    ZOU Hongxing, DAI Qionghai, LI Yanda, et al. Nonexistence of cross-term free time-frequency distribution with concentration of Wigner-Ville distribution[J]. Science in China Series F:Information Sciences, 2002, 45(3): 174–180. doi: 10.1360/02yf9015
    BOASHASH B, ALI KHAN N, and BEN-JABEUR T. Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review[J]. Digital Signal Processing, 2015, 40: 1–30. doi: 10.1016/j.dsp.2014.12.015
    赵培洪, 平殿发, 邓兵, 等. 魏格纳-维尔分布交叉项抑制方法综述[J]. 探测与控制学报, 2010, 32(1): 23–29. doi: 10.3969/j.issn.1008-1194.2010.01.006

    ZHAO Peihong, PING Dianfa, DENG Bing, et al. Review of cross-terms suppression methods in Wigner-Ville distribution[J]. Journal of Detection &Control, 2010, 32(1): 23–29. doi: 10.3969/j.issn.1008-1194.2010.01.006
    ALI KHAN N and SANDSTEN M. Time-frequency image enhancement based on interference suppression in Wigner-Ville distribution[J]. Signal Processing, 2016, 127: 80–85. doi: 10.1016/j.sigpro.2016.02.027
    REN Huorong, REN An, and LI Zhiwu. A new strategy for the suppression of cross-terms in pseudo Wigner-Ville distribution[J]. Signal, Image and Video Processing, 2016, 10(1): 139–144. doi: 10.1007/s11760-014-0713-9
    BOASHASH B and OUELHA S. An improved design of high-resolution quadratic time-frequency distributions for the analysis of nonstationary multicomponent signals using directional compact kernels[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2701–2713. doi: 10.1109/TSP.2017.2669899
    PACHORI R B and NISHAD A. Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform[J]. Signal Processing, 2016, 120: 288–304. doi: 10.1016/j.sigpro.2015.07.026
    王见, 李金同, 卢华玲, 等. 采用STFT-Wigner变换抑制Wigner-Ville分布交叉项[J]. 重庆大学学报, 2013, 36(8): 15–18. doi: 10.11835/j.jssn.1000-582X.2013.08.003

    WANG Jian, LI Jintong, LU Hualing, et al. Using STFT-Wigner transform to suppress the cross terms in Wigner-Ville distribution[J]. Journal of Chongqing University, 2013, 36(8): 15–18. doi: 10.11835/j.jssn.1000-582X.2013.08.003
    STANKWITZ H C, DALLAIRE R J, and FIENUP J R. Nonlinear apodization for sidelobe control in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 267–279. doi: 10.1109/7.366309
    GUO Liang, YIN Hongfei, ZHOU Yu, et al. A novel sidelobe-suppression algorithm for airborne synthetic aperture imaging ladar[J]. Optics & Laser Technology, 2019, 111: 714–719. doi: 10.1016/j.optlastec.2018.09.005
    徐光耀, 刘永泽, 许小剑. 基于变迹滤波的MIMO-SAR图像分辨率增强技术[J]. 北京航空航天大学学报, 2017, 43(7): 1313–1320. doi: 10.13700/j.bh.1001-5965.2016.0514

    XU Guangyao, LIU Yongze, and XU Xiaojian. Enhanced resolution in MIMO-SAR imaging using apodization[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(7): 1313–1320. doi: 10.13700/j.bh.1001-5965.2016.0514
    NI Chong, WANG Yanfei, XU Xianghui, et al. A super-resolution algorithm for synthetic aperture radar based on modified spatially variant apodization[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(2): 355–364. doi: 10.1007/s11433-010-4186-8
    SARKAR B, PANIGRAHI R K, and MISHRA A K. Sidelobe suppression in Wigner distribution using non-linear apodization[C]. Proceedings of 2009 Annual IEEE India Conference, Gujarat, India, 2009: 1–4. doi: 10.1109/INDCON.2009.5409393.
    SUN Kewen, ZHANG Min, and YANG Dongkai. A new interference detection method based on joint hybrid time-frequency distribution for GNSS receivers[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 9057–9071. doi: 10.1109/TVT.2016.2515718
    刘颖, 陈殿仁, 陈磊, 等. 基于周期Choi-Williams Hough变换的线性调频连续波信号参数估计算法[J]. 电子与信息学报, 2015, 37(5): 1135–1140. doi: 10.11999/JEIT140876

    LIU Ying, CHEN Dianren, CHEN Lei, et al. Parameters estimation algorithm of linear frequency modulated continuous wave signals based on period Choi-Williams Hough transform[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1135–1140. doi: 10.11999/JEIT140876
    张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750

    ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (2419) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return