Advanced Search
Volume 41 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
Weijia CUI, Peng ZHANG, Bin BA. Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181
Citation: Weijia CUI, Peng ZHANG, Bin BA. Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181

Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination

doi: 10.11999/JEIT181181
Funds:  The National Natural Science Foundation of China (61401513)
  • Received Date: 2018-12-24
  • Rev Recd Date: 2019-04-12
  • Available Online: 2019-04-25
  • Publish Date: 2019-10-01
  • Considering the problem of Orthogonal Frequency Division Multiplexing (OFDM) signal delay estimation with only a Single Measurement Vector (SMV) in a complex environment, a sparse reconstruction time delay estimation algorithm based on Bayesian Automatic Relevance Determination (BARD) is proposed. The Bayesian framework is used to start from the perspective of further mining useful information, and asymmetric Automatic Relevance Determination(ARD) priori is introduced to integrate into the parameter estimation process, which improves the accuracy of time delay estimation under SMV and low Signal-to-Noise Ratio (SNR) conditions. Firstly, a sparse real-domain representation model is constructed based on the estimated frequency domain response of the OFDM signal physical layer protocol data unit. Then, probability hypothesis for the noise and sparse coefficient vectors are made in the model, and Automatic Relevance Determination (ARD) prior is introduced. Finally, according to the Bayesian framework, the Expectation Maximization (EM) algorithm is used to solve the hyperparameters to estimate the delay. The simulation experiments show that the proposed algorithm has better estimation performance and is closer to the Cramér–Rao Bound (CRB). At the same time, based on the Universal Software Radio Peripheral (USRP), the effectiveness of the proposed algorithm is verified by the actual signal.
  • VAN NEE R and PRASAD R. OFDM for Wireless Multimedia Communications[M]. Boston: Artech House, 2000: 3–4.
    SEGURA M J, MUT V A, and PATIÑO H D. Mobile robot self-localization system using IR-UWB sensor in indoor environments[C]. 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, Italy, 2009: 29–34.
    CHAN Y T, HANG H Y C, and CHING P C. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 10–16. doi: 10.1109/TVT.2005.861162
    CELEBI H and ARSLAN H. Adaptive positioning systems for cognitive radios[C]. 2007 IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, 2007: 78–84.
    LIU Ying and WANG Shuxun. TOA estimation method using fourth order cumulants[C]. 2000 International Conference on Signal Processing. 16th World Computer Congress 2000, Beijing, China, 2000: 210–214.
    巴斌, 刘国春, 李韬, 等. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计[J]. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403

    BA Bin, LIU Guochun, LI Tao, et al. Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product[J]. Acta Physica Sinica, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    BIALER O, RAPHAELI D, and WEISS A J. Robust time-of-arrival estimation in multipath channels with OFDM signals[C]. 2017 Signal Processing Conference, Kos, Greece, 2017: 2724–2728.
    CHEN Yajun, PENG Jianhua, HUANG Kaizhi, et al. A multipath delay estimation model and algorithm in OFDM systems[C]. 2014 IEEE International Conference on Information Science and Technology, Shenzhen, China, 2014: 144–147.
    巴斌, 郑娜娥, 胡捍英, 等. OFDM系统中基于PM的时延估计算法[J]. 太赫兹科学与电子信息学报, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355

    BA Bin, ZHENG Nae, HU Hanying, et al. Time delay estimation based on PM in OFDM system[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355
    LI Xinrong and PAHLAVAN K. Super-resolution TOA estimation with diversity for indoor geolocation[J]. IEEE Transactions on Wireless Communications, 2004, 3(1): 224–234. doi: 10.1109/TWC.2003.819035
    HÄCKER P and YANG B. Single snapshot DOA estimation[J]. Advances in Radio Science, 2010, 8: 251–256. doi: 10.5194/ars-8-251-2010
    李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法[J]. 物理学报, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701

    LI Jing, ZHAO Yongjun, and LI Donghai. Time delay estimation using Markov Chain Monte Carlo method[J]. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    冷雪冬, 巴斌, 逯志宇, 等. 基于回溯筛选的稀疏重构时延估计算法[J]. 物理学报, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701

    LENG Xuedong, BA Bin, LU Zhiyu, et al. Sparse reconstruction time delay estimation algorithm based on backtracking filter[J]. Acta Physica Sinica, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172
    尹艳玲, 乔钢, 刘凇佐, 等. 基于基追踪去噪的水声正交频分复用稀疏信道估计[J]. 物理学报, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301

    YIN Yanling, QIAO Gang, LIU Songzuo, et al. Sparse channel estimation of underwater acoustic orthogonal frequency division Multiplexing based on basis pursuit denoising[J]. Acta Physica Sinica, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
    NEAL R M. Bayesian Learning for Neural Networks[M]. New York: Springer-Verlag, 1996: 112–114.
    WIPF D and NAGARAJAN S. A new view of automatic relevance determination[C]. The 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1625–1632.
    GAST M S, O’Reilly Taiwan公司, 译. 802.11无线网络权威指南[M]. 2版. 南京: 东南大学出版社, 2007: 293–297.

    GAST M S, O’Reilly Taiwan, translation. 802.11 Wireless Netwoeks: The Definitive Guide[M]. 2nd ed. Nanjing: Southeast University Press, 2007: 293–297.
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529
  • Cited by

    Periodical cited type(9)

    1. 苍思远,生雪莉,董航,郭龙祥. 解卷积主动声呐目标回波高分辨时延估计技术. 电子与信息学报. 2021(03): 842-849 . 本站查看
    2. 陆兴华,黄浩瀚,邱纪涛,孙宜帆. 基于压缩感知的异构网络数据动态重构算法. 计算机技术与发展. 2021(03): 133-137 .
    3. 唐冬来,倪平波,张捷,刘友波,李玉,张强. 基于离散弗雷歇距离的户变关系识别方法. 电力系统自动化. 2021(06): 223-230 .
    4. 刘珊,丛培杰,吴杰,肖百惠,曲德宇,杨淼. 基于时频域转换的变压器油纸绝缘介质响应检测研究. 自动化技术与应用. 2021(06): 112-116 .
    5. 杜改丽,刘师良,程德红. 压缩感知改进探地雷达回波信号时延估计. 机械设计与制造. 2021(07): 24-27 .
    6. 蒋占军,刘庆达. 高速移动通信系统中OTFS信道估计算法研究. 电子与信息学报. 2021(10): 2878-2885 . 本站查看
    7. 李记龙,王雪琰,翟玉爽,黄敏燕,冯海泓. 鲁棒性的水下高精度时延估计算法. 导航定位学报. 2020(03): 58-64 .
    8. 王小英,刘庆杰,庞国莉. 恶意代码攻击下多业务通信网络安全响应仿真. 计算机仿真. 2020(10): 137-141 .
    9. 薛凯,陈凯亚,廖成. 认知无线网络下高效协作波束赋形抑制算法. 计算机仿真. 2020(11): 308-311+370 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (2249) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return