Advanced Search
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Guangwu CHEN, Jianhao CHENG, Juhua YANG, Hao LIU, Linjing ZHANG. Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171
Citation: Guangwu CHEN, Jianhao CHENG, Juhua YANG, Hao LIU, Linjing ZHANG. Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1766-1773. doi: 10.11999/JEIT181171

Improved Neural Network Enhanced Navigation System of Adaptive Unsented Kalman Filter

doi: 10.11999/JEIT181171
Funds:  The National Natural Science Foundation of China (61863024), The Gansu Province Basic Research Innovation Group Program (1606RJIA327), The Gansu Province Higher Education Research Project (2018C-11), The Gansu Province Natural Science Foundation (18JR3RA107), The Gansu Province Science and Technology Plan Funding (18CX3ZA004)
  • Received Date: 2018-12-19
  • Rev Recd Date: 2019-04-22
  • Available Online: 2019-05-22
  • Publish Date: 2019-07-01
  • In order to solve the problem of speed and position error divergence in the integrated navigation system based on MicroElectro Mechanical Systems (MEMS) inertial device and GPS system combined positioning, an improved Adaptive Unsecnted Kalman Filter (AUKF) enhanced by the Radial Basis Function(RBF) neural network based on Artificial Bee Colony(ABC) algorithm is proposed. When the GPS signal is out of lock, the trained network outputs predictied information to perform error correction on the Strapdown Inertial Navigation System(SINS). Finally, the performance of the method is verified by vehicle-mounted semi-physical simulation experiments. The experimental results show that the proposed method has a significant inhibitory effect on the error divergence of the strapdown inertial navigation system in the case of loss of lock.
  • loading
  • 崔留争, 高思远, 贾宏光, 等. 神经网络辅助卡尔曼滤波在组合导航中的应用[J]. 光学精密工程, 2014, 22(5): 1304–1311.

    CUI Liuzheng, GAO Siyuan, JIA Hongguang, et al. Application of neural network aided Kalman filtering to SINS/GPS[J]. Optics and Precision Engineering, 2014, 22(5): 1304–1311.
    刘昊, 陈光武, 魏宗寿, 等. 改进的最小二乘自适应滤波陀螺仪去噪方法[J]. 仪器仪表学报, 2018, 39(4): 107–114.

    LIU Hao, CHEN Guangwu, WEI Zongshou, et al. Gyro denoising method based on least squares adaptive filter[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 107–114.
    王迪, 陈光武, 杨厅. 一种快速高精度GPS组合定位方法研究[J]. 铁道学报, 2017, 39(2): 67–73. doi: 10.3969/j.issn.1001-8360.2017.02.010

    WANG Di, CHEN Guangwu, and YANG Ting. Study on a fast and precision GPS integrated positioning method[J]. Journal of the China Railway Society, 2017, 39(2): 67–73. doi: 10.3969/j.issn.1001-8360.2017.02.010
    ZHANG Quan and NIU Xiaoji. Research on accuracy enhancement of low-cost MEMS INS/GNSS integration for land vehicle navigation[C]. Proceedings of 2018 IEEE/ION Position, Location and Navigation Symposium, Monterey, USA, 2018: 891–898.doi: 10.1109/PLANS.2018.8373467.
    WANG Di, XU Xiaosu, and ZHU Yongyun. A novel hybrid of a fading filter and an extreme learning machine for GPS/INS during GPS outages[J]. Sensors, 2018, 18(11): 3863–3885. doi: 10.3390/s18113863
    JIANG Zhuqing, LIU Chonghua, ZHANG Gong, et al. GPS/INS integrated navigation based on UKF and simulated annealing optimized SVM[C]. Proceedings of the 78th Vehicular Technology Conference, Las Vegas, USA, 2013: 1–5.doi: 10.1109/VTCFall.2013.6692217.
    NEEDHAM T G and BRAASCH M S. Impact of gravity modeling error on integrated GNSS/INS coasting performance[C]. Proceedings of 2017 IEEE/AIAA 36th Digital Avionics Systems Conference, St. Petersburg, 2017: 1–10.doi: 10.1109/DASC.2017.8102006.
    高宗余, 李德胜. 神经网络在MEMS-IMU/GPS组合导航中的应用研究[J]. 传感技术学报, 2009, 22(9): 1356–1360. doi: 10.3969/j.issn.1004-1699.2009.09.028

    GAO Zongyu and LI Desheng. Study on application of neural network in MEMS-INS/GPS combination[J]. Chinese Journal of Sensors and Actuators, 2009, 22(9): 1356–1360. doi: 10.3969/j.issn.1004-1699.2009.09.028
    刘卓凡, 杨凯, 王加详, 等. 基于ANFIS神经网络的GPS/INS组合导航信息融合[J]. 计算机测量与控制, 2012, 20(8): 2291–2293.

    LIU Zhuofan, YANG Kai, WANG Jiaxiang, et al. GPS/INS integrated navigation fusion algorithm based on ANFIS neural network[J]. Computer Measurement &Control, 2012, 20(8): 2291–2293.
    孙佳兴, 张晓林, 侯冰. ABC优化BP神经网络算法在组合导航中的应用研究[J]. 遥测遥控, 2016, 37(5): 40–48. doi: 10.3969/j.issn.2095-1000.2016.05.008

    SUN Jiaxing, ZHANG Xiaolin, and HOU Bing. Application of ABC-based BP neural network in integrated navigation system[J]. Telemetry Remote Control, 2016, 37(5): 40–48. doi: 10.3969/j.issn.2095-1000.2016.05.008
    胡高歌, 高社生, 赵岩. 一种新的自适应UKF算法及其在组合导航中的应用[J]. 中国惯性技术学报, 2014, 22(3): 357–361.

    HU Gaoge, GAO Shesheng, and ZHAO Yan. A novel adaptive UKF and its application in integrated navigation[J]. Journal of Chinese Inertial Technology, 2014, 22(3): 357–361.
    江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京: 科学出版社, 2014: 83–94.

    JIANG Mingyan and YUAN Dongfeng. Artificial Bee Colony Algorithm and its Application[M]. Beijing: Science Press, 2014: 83–94.
    秦永元, 张洪钺, 汪淑华. 卡尔曼滤波与组合导航原理(第三版)[M]. 西安: 西北工业大学出版社, 2011: 221–231.

    QIN Yongyuan, ZHANG Hongyu, and WANG Shuhua. Kalman Filtering and Integrated Navigation Principles (Third Edition)[M]. Xi'an: Northwestern Polytechnical University Press, 2011: 221–231.
    郭通, 兰巨龙, 李玉峰, 等. 基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[J]. 电子与信息学报, 2013, 35(9): 2220–2226.

    GUO Tong, LAN Julong, LI Yufeng, et al. Network traffic prediction with radial basis function neural network based on quantum adaptive particle swarm optimization[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2220–2226.
    金瑶, 蔡之华, 梁丁文. 基于差分演化算法的自适应无迹卡尔曼滤波[J]. 电子与信息学报, 2013, 35(4): 838–843.

    JIN Yao, CAI Zhihua, and LIANG Dingwen. Adaptive unscented Kalman filter based on differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2013, 35(4): 838–843.
    岳哲, 廉保旺, 唐成凯. 基于加权自适应平方根容积卡尔曼滤波的GPS/INS组合导航方法[J]. 电子与信息学报, 2018, 40(3): 565–572. doi: 10.1999/JEIT170597

    YUE Zhe, LIAN Baowang, and TANG Chengkai. A GPS/INS integrated navigation method based on weighting adaptive square-root cubature Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(3): 565–572. doi: 10.1999/JEIT170597
    IANG Chen, ZHANG Shubi, and ZHANG Qiuzhao. A new adaptive h-infinity filtering algorithm for the GPS/INS integrated navigation[J]. Sensors, 2016, 16(12): 2127. doi: 10.3390/s16122127
    NING Yipeng, WANG Jian, HAN Houzeng, et al. An optimal radial basis function neural network enhanced adaptive robust kalman filter for GNSS/INS integrated systems in complex urban areas[J]. Sensors, 2018, 18(9): 3091–3112. doi: 10.3390/s18093091
    杨少凡, 余华兵, 陈新华, 等. 基于扩展Kalman滤波的单领航者自主水下航行器协同导航判别式训练方法研究[J]. 电子与信息学报, 2015, 37(11): 2756–2761. doi: 10.11999/JEIT150036

    YANG Shaofan, YU Huabing, CHEN Xinhua, et al. Discriminative training of Kalman filters based cooperative navigation for multiple autonomous underwater vehicles with a single leader[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2756–2761. doi: 10.11999/JEIT150036
    李江, 钱富才, 刘丁, 等. 具有未知参数的GPS/DR组合导航系统跟踪与辨识[J]. 电子与信息学报, 2013, 35(4): 921–926.

    LI Jiang, QIAN Fucai, LIU Ding, et al. Tracking and identification for GPS/DR integrated navigation system with unknown parameters[J]. Journal of Electronics &Information Technology, 2013, 35(4): 921–926.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (2757) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return