Advanced Search
Volume 41 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Jing WANG, Yu FAN, Ding ZHAO, Chen YANG, Gang WANG, Jirun LUO. Analysis of Beam Wave Interaction in a Planar Metallic Grating Based on Cyclotron Resonance Enhancement Effect[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2919-2924. doi: 10.11999/JEIT181145
Citation: Jing WANG, Yu FAN, Ding ZHAO, Chen YANG, Gang WANG, Jirun LUO. Analysis of Beam Wave Interaction in a Planar Metallic Grating Based on Cyclotron Resonance Enhancement Effect[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2919-2924. doi: 10.11999/JEIT181145

Analysis of Beam Wave Interaction in a Planar Metallic Grating Based on Cyclotron Resonance Enhancement Effect

doi: 10.11999/JEIT181145
Funds:  The National Natural Science Foundation of China (61671431)
  • Received Date: 2018-12-13
  • Rev Recd Date: 2019-03-26
  • Available Online: 2019-04-25
  • Publish Date: 2019-12-01
  • Based on the beam wave synchronization interaction in transverse and longitudinal directions at the same time and derived from Maxwell’s equation and linear Vlasov equation, the planar metallic grating beam-wave interaction " hot” dispersion equation considering both cyclotron resonance and Cherenkov resonance is deduced. Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the " hot” dispersion equation show that the beam-wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.
  • loading
  • CHIPENGO U, NAHAR N K, and VOLAKIS J L. A study of velocity-tapered slow wave structures for high-efficiency backward wave oscillators[J]. IEEE Transactions on Electron Devices, 2018, 65(7): 3054–3060. doi: 10.1109/TED.2017.2769676
    SAN M T, OGURA K, KUBOTA K, et al. Study on operation of oversized backward wave oscillator for broadband terahertz radiation[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 530–538. doi: 10.1109/TPS.2018.2796559
    PONOMARENKO S S, KISHKO S A, ZAVERTANNIY V V, et al. 400-GHz continuous-wave Clinotron oscillator[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 82–86. doi: 10.1109/tps.2012.2226247
    XU Changpeng, YIN Yong, BI Liangjie, et al. A novel wire-wrap slow-wave structure for Terahertz backward wave oscillator Applications[J]. IEEE Transactions on Electron Devices, 2017, 64(1): 293–299. doi: 10.1109/TED.2016.2628045
    KARETNIKOVA T A, ROZHNEV A G, RYSKIN N M, et al. Gain analysis of a 0.2-THz traveling-wave tube with sheet electron beam and staggered grating slow wave structure[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2129–2134. doi: 10.1109/TED.2017.2787960
    RYSKIN N M, ROZHNEV A G, STARODUBOV A V, et al. Planar microstrip slow-wave structure for low-voltage V-band traveling-wave tube with a sheet electron beam[J]. IEEE Electron Device Letters, 2018, 39(5): 757–760. doi: 10.1109/LED.2018.2821770
    MINEO M and PAOLONI C. Comparison of THz backward wave oscillators based on corrugated waveguides[J]. Progress in Electromagnetics Research Letters, 2012, 30: 163–171. doi: 10.2528/PIERL12013107
    MINEO M and PAOLONI C. Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications[J]. IEEE Transactions on Electron Devices, 2010, 57(6): 1481–1484. doi: 10.1109/TED.2010.2045678
    MINEO M and PAOLONI C. Double-corrugated rectangular waveguide slow-wave structure for Terahertz vacuum devices[J]. IEEE Transactions on Electron Devices, 2010, 57(11): 3169–3175. doi: 10.1109/ted.2010.2071876
    NUSINOVICH G S and ZHAO Ding. Combined resonances in cyclotron masers with periodic slow-wave structures[J]. IEEE Transactions on Plasma Science, 2015, 43(3): 804–814. doi: 10.1109/TPS.2015.2396354
    LUCE T C. Applications of high-power millimeter waves in fusion energy research[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 734–754. doi: 10.1109/TPS.2002.802147
    KALARIA P C, KARTIKEYAN M V, and THUMM M. Design of 170 GHz, 1.5-MW conventional cavity Gyrotron for plasma heating[J]. IEEE Transactions on Plasma Science, 2014, 42(6): 1522–1528. doi: 10.1109/TPS.2014.2305251
    THUMM M. High power Gyro-devices for plasma heating and other applications[J]. International Journal of Infrared and Millimeter Waves, 2005, 26(4): 483–503. doi: 10.1007/s10762-005-4068-8
    CHU K R. The electron cyclotron maser[J]. Reviews of Modern Physics, 2004, 76(2): 489–540. doi: 10.1103/RevModPhys.76.489
    ROSTOV V V, GUNIN A V, TSYGANKOV R V, et al. Two-wave Cherenkov oscillator with moderately oversized slow-wave structure[J]. IEEE Transactions on Plasma Science, 2018, 46(1): 33–42. doi: 10.1109/TPS.2017.2773661
    ZHANG Keqian and LI Dejie. Electromagnetic Theory for Microwaves and Optoelectronics[M]. New York: Springer, 1998: 383–397.
    ZHAO Ding. Kinetic analysis of two dimensional metallic grating Cerenkov maser[J]. Physics of Plasmas, 2011, 18(8): 084508. doi: 10.1063/1.3627146
    谢文球. 平面格栅慢波结构高频特性及注波互作用的研究[D]. [博士论文], 中国科学院大学, 2016.

    XIE Wenqiu. Investigation of the high frequency characteristics and beam wave interaction for the planar grating slow wave structure[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2016.
    KOU C S, WANG Q S, MCDERMOTT D B, et al. High-power harmonic gyro-TWT’s. I. Linear theory and oscillation study[J]. IEEE Transactions on Plasma Science, 1992, 20(3): 155–162. doi: 10.1109/27.142815
    刘盛纲. 相对论电子学[M]. 北京: 科学出版社, 1987: 228–233.

    LIU Shenggang. Relativistic Electronics[M]. Beijing: Science Press, 1987: 228–233.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (2004) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return