Advanced Search
Volume 42 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
Ping TAN, Limei LIU, Fan GUO, Kaijun ZHOU. Applying Chernoff Weighted Classification Frame Method to MotorImagery Brain Computer Interface[J]. Journal of Electronics & Information Technology, 2020, 42(2): 488-494. doi: 10.11999/JEIT181132
Citation: Ping TAN, Limei LIU, Fan GUO, Kaijun ZHOU. Applying Chernoff Weighted Classification Frame Method to MotorImagery Brain Computer Interface[J]. Journal of Electronics & Information Technology, 2020, 42(2): 488-494. doi: 10.11999/JEIT181132

Applying Chernoff Weighted Classification Frame Method to MotorImagery Brain Computer Interface

doi: 10.11999/JEIT181132
Funds:  The National Natural Science Foundation of China (61502537), The National Social Science Foundation of China (19BGL111), The Scientific Research Project of the Education Department of Hunan Province (18B338), The Open Fund of Key Laboratory of Hunan Province (2017TP1026), The Foundation of Ministry of Education Humanities and Social Sciences (14YJCZH099)
  • Received Date: 2018-12-07
  • Rev Recd Date: 2019-07-20
  • Available Online: 2019-09-11
  • Publish Date: 2020-02-19
  • For the problem that the classifier is less considered to be combined with the brain's cognitive process in the Brain-Computer Interface (BCI) system, a Chernoff-weighted based classifier integrated frame method is proposed and used in synchronous motor imagery BCI. In the method, the statistic characteristics of ElectroEncephaloGraphy (EEG) are obtained by analyzing in each time point of synchronous BCI, and then the probability model is established to compute the Chernoff error bound, which is adopted as the weight of common classifier to take the discriminant process. The test experiments are based on the datasets from BCI competitions, and the proposed frame method is employed to compose with LDA, SVM, ELM respectively. The experimental results demonstrate that the proposed frame method shows competitive performance compared with other methods.

  • loading
  • TIWARI N, EDLA D R, DODIA S, et al. Brain computer interface: A comprehensive survey[J]. Biologically Inspired Cognitive Architectures, 2018, 26: 118–129. doi: 10.1016/j.bica.2018.10.005
    杨帮华, 李博. 基于脑机接口的康复训练系统[J]. 系统仿真学报, 2019, 31(2): 174–180. doi: 10.16182/j.issn1004731x.joss.18-0791

    YANG Banghua and LI Bo. Rehabilitation training system based on brain computer interface[J]. Journal of System Simulation, 2019, 31(2): 174–180. doi: 10.16182/j.issn1004731x.joss.18-0791
    ALAZRAI R, ALWANNI H, BASLAN Y, et al. EEG-based brain-computer interface for decoding motor imagery tasks within the same hand using Choi-Williams time-frequency distribution[J]. Sensors, 2017, 17(9): 1937. doi: 10.3390/s17091937
    LEEB R, LEE F, KEINRATH C, et al. Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 473–482. doi: 10.1109/TNSRE.2007.906956
    GUY V, SORIANI M H, BRUNO M, et al. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis[J]. Annals of Physical and Rehabilitation Medicine, 2018, 61(1): 5–11. doi: 10.1016/j.rehab.2017.09.004
    HASAN M R, IBRAHIMY M I, MOTAKABBER S M A, et al. Classification of multichannel EEG signal by linear discriminant analysis[C]. The 23rd International Conference on Systems Engineering, 2015: 279–282. doi: 10.1007/978-3-319-08422-0_42.
    SELIM S, TANTAWI M M, SHEDEED H A, et al. A CSP\AM-BA-SVM approach for motor imagery BCI system[J]. IEEE Access, 2018, 6: 49192–49208. doi: 10.1109/access.2018.2868178
    BHADURI S, KHASNOBISH A, BOSE R, et al. Classification of lower limb motor imagery using K nearest neighbor and naïve-bayesian classifier[C]. The 3rd IEEE International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 2016: 1–6. doi: 10.1109/RAIT.2016.7507952.
    ZHANG Yu, WANG Yu, JIN Jing, et al. Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification[J]. International Journal of Neural Systems, 2017, 27(2): 1650032. doi: 10.1142/S0129065716500325
    HAZRATI M K and ERFANIAN A. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network[J]. Medical Engineering & Physics, 2010, 32(7): 730–739. doi: 10.1016/j.medengphy.2010.04.016
    程时伟, 周桃春, 唐智川, 等. 卷积神经网络实现的运动想象脑电分类及人-机器人交互应用[J]. 软件学报, 2019, 30(10): 1–14. doi: 10.13328/j.cnki.jos.005782

    CHENG Shiwei, ZHOU Taochun, TANG Zhichuan, et al. Motor imagery EEG classifcation based on convolutional neural network and its application in human-robot interaction[J]. Journal of Software, 2019, 30(10): 1–14. doi: 10.13328/j.cnki.jos.005782
    LEMM S, SCHAFER C, and CURIO G. BCI competition 2003-data set Ⅲ: Probabilistic modeling of sensorimotorμ-rhythms for classification of imaginary hand movements[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1077–1080. doi: 10.1109/TBME.2004.827076
    TAN Ping, TAN Guanzheng, CAI Zixing, et al. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI[J]. Medical & Biological Engineering & Computing, 2017, 55(1): 33–43. doi: 10.1007/s11517-016-1493-x
    MATSUI H. Variable and boundary selection for functional data via multiclass logistic regression modeling[J]. Computational Statistics & Data Analysis, 2014, 78: 176–185. doi: 10.1016/j.csda.2014.04.015
    SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. The 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644. doi: 10.1109/CNE.2003.1196910.
    FORSTMANN B U, RATCLIFF R, and WAGENMAKERS E J. Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions[J]. Annual Review of Psychology, 2016, 67: 641–666. doi: 10.1146/annurev-psych-122414-033645
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (2519) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return