Citation: | Ping TAN, Limei LIU, Fan GUO, Kaijun ZHOU. Applying Chernoff Weighted Classification Frame Method to MotorImagery Brain Computer Interface[J]. Journal of Electronics & Information Technology, 2020, 42(2): 488-494. doi: 10.11999/JEIT181132 |
For the problem that the classifier is less considered to be combined with the brain's cognitive process in the Brain-Computer Interface (BCI) system, a Chernoff-weighted based classifier integrated frame method is proposed and used in synchronous motor imagery BCI. In the method, the statistic characteristics of ElectroEncephaloGraphy (EEG) are obtained by analyzing in each time point of synchronous BCI, and then the probability model is established to compute the Chernoff error bound, which is adopted as the weight of common classifier to take the discriminant process. The test experiments are based on the datasets from BCI competitions, and the proposed frame method is employed to compose with LDA, SVM, ELM respectively. The experimental results demonstrate that the proposed frame method shows competitive performance compared with other methods.
TIWARI N, EDLA D R, DODIA S, et al. Brain computer interface: A comprehensive survey[J]. Biologically Inspired Cognitive Architectures, 2018, 26: 118–129. doi: 10.1016/j.bica.2018.10.005
|
杨帮华, 李博. 基于脑机接口的康复训练系统[J]. 系统仿真学报, 2019, 31(2): 174–180. doi: 10.16182/j.issn1004731x.joss.18-0791
YANG Banghua and LI Bo. Rehabilitation training system based on brain computer interface[J]. Journal of System Simulation, 2019, 31(2): 174–180. doi: 10.16182/j.issn1004731x.joss.18-0791
|
ALAZRAI R, ALWANNI H, BASLAN Y, et al. EEG-based brain-computer interface for decoding motor imagery tasks within the same hand using Choi-Williams time-frequency distribution[J]. Sensors, 2017, 17(9): 1937. doi: 10.3390/s17091937
|
LEEB R, LEE F, KEINRATH C, et al. Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 473–482. doi: 10.1109/TNSRE.2007.906956
|
GUY V, SORIANI M H, BRUNO M, et al. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis[J]. Annals of Physical and Rehabilitation Medicine, 2018, 61(1): 5–11. doi: 10.1016/j.rehab.2017.09.004
|
HASAN M R, IBRAHIMY M I, MOTAKABBER S M A, et al. Classification of multichannel EEG signal by linear discriminant analysis[C]. The 23rd International Conference on Systems Engineering, 2015: 279–282. doi: 10.1007/978-3-319-08422-0_42.
|
SELIM S, TANTAWI M M, SHEDEED H A, et al. A CSP\AM-BA-SVM approach for motor imagery BCI system[J]. IEEE Access, 2018, 6: 49192–49208. doi: 10.1109/access.2018.2868178
|
BHADURI S, KHASNOBISH A, BOSE R, et al. Classification of lower limb motor imagery using K nearest neighbor and naïve-bayesian classifier[C]. The 3rd IEEE International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 2016: 1–6. doi: 10.1109/RAIT.2016.7507952.
|
ZHANG Yu, WANG Yu, JIN Jing, et al. Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification[J]. International Journal of Neural Systems, 2017, 27(2): 1650032. doi: 10.1142/S0129065716500325
|
HAZRATI M K and ERFANIAN A. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network[J]. Medical Engineering & Physics, 2010, 32(7): 730–739. doi: 10.1016/j.medengphy.2010.04.016
|
程时伟, 周桃春, 唐智川, 等. 卷积神经网络实现的运动想象脑电分类及人-机器人交互应用[J]. 软件学报, 2019, 30(10): 1–14. doi: 10.13328/j.cnki.jos.005782
CHENG Shiwei, ZHOU Taochun, TANG Zhichuan, et al. Motor imagery EEG classifcation based on convolutional neural network and its application in human-robot interaction[J]. Journal of Software, 2019, 30(10): 1–14. doi: 10.13328/j.cnki.jos.005782
|
LEMM S, SCHAFER C, and CURIO G. BCI competition 2003-data set Ⅲ: Probabilistic modeling of sensorimotorμ-rhythms for classification of imaginary hand movements[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1077–1080. doi: 10.1109/TBME.2004.827076
|
TAN Ping, TAN Guanzheng, CAI Zixing, et al. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI[J]. Medical & Biological Engineering & Computing, 2017, 55(1): 33–43. doi: 10.1007/s11517-016-1493-x
|
MATSUI H. Variable and boundary selection for functional data via multiclass logistic regression modeling[J]. Computational Statistics & Data Analysis, 2014, 78: 176–185. doi: 10.1016/j.csda.2014.04.015
|
SCHLOGL A, KEINRATH C, SCHERER R, et al. Information transfer of an EEG-based brain computer interface[C]. The 1st International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy, 2003: 641–644. doi: 10.1109/CNE.2003.1196910.
|
FORSTMANN B U, RATCLIFF R, and WAGENMAKERS E J. Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions[J]. Annual Review of Psychology, 2016, 67: 641–666. doi: 10.1146/annurev-psych-122414-033645
|