Advanced Search
Volume 41 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
Gongguo XU, Ganlin SHAN, Xiusheng DUAN, Chenglin QIAO, Haotian WANG. Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129
Citation: Gongguo XU, Ganlin SHAN, Xiusheng DUAN, Chenglin QIAO, Haotian WANG. Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129

Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking

doi: 10.11999/JEIT181129
  • Received Date: 2018-12-06
  • Rev Recd Date: 2019-05-26
  • Available Online: 2019-06-03
  • Publish Date: 2019-09-10
  • In order to solve the problem of sensor scheduling in the multi-task scenario, a multi-sensor scheduling method for target cooperative detection and tracking is proposed. Firstly, the sensor scheduling model is built based on the Partially Observable Markov Decision Process (POMDP) and an objective function is designed based on Posterior Carmér-Rao Lower Bound (PCRLB). Then, considering sensor switching time and the change of target number, the randomly distributed particles are used to calculate the detection probability of new target, and the sensor scheduling methods are given for the situations with fixed target number and time-varying target number. At last, to meet the real-time requirement of online scheduling, an Adaptive Multi-swarm Cooperative Differential Evolution (AMCDE) algorithm is used to solve the sensor scheduling scheme. Simulation results show that the method can effectively deal with multi-task scenarios and realize reasonable scheduling of multi-sensor resources.
  • loading
  • 乔成林, 单甘霖, 段修生, 等. 面向跟踪任务需求的主动传感器调度方法[J]. 系统工程与电子技术, 2017, 39(11): 2515–2521. doi: 10.3969/j.issn.1001-506X.2017.11.18

    QIAO Chenglin, SHAN Ganlin, DUAN Xiusheng, et al. Scheduling algorithm of active sensors for tracking task requirement[J]. Systems Engineering and Electronics, 2017, 39(11): 2515–2521. doi: 10.3969/j.issn.1001-506X.2017.11.18
    陈延军, 潘泉, 梁彦, 等. 基于信息量的分布式协同自组织算法[J]. 控制理论与应用, 2011, 28(10): 1391–1398.

    CHEN Yanjun, PAN Quan, LIANG Yan, et al. Decentralized collaborative self-organization algorithm based on information content[J]. Control Theory &Applications, 2011, 28(10): 1391–1398.
    ZHANG Duo, LIU Meiqin, ZHANG Senlin, et al. Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(4): 544–556. doi: 10.1631/FITEE.1601695
    CAO Nianxia, CHOI S, MASAZADE E, et al. Sensor selection for target tracking in wireless sensor networks with uncertainty[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5191–5204. doi: 10.1109/TSP.2016.2595500
    ZHANG Qiang, LIU Meiqin, and ZHANG Senlin. Node topology effect on target tracking based on UWSNs using quantized measurements[J]. IEEE Transactions on Cybernetics, 2015, 45(10): 2323–2335. doi: 10.1109/TCYB.2014.2371232
    KESHAVARZ-MOHAMMADIYAN A and KHALOOZADEH H. Interacting multiple model and sensor selection algorithms for manoeuvring target tracking in wireless sensor networks with multiplicative noise[J]. International Journal of Systems Science, 2017, 48(5): 899–908. doi: 10.1080/00207721.2016.1177128
    VAISENBERG R, MOTTA A D, MEHROTRA S, et al. Scheduling sensors for monitoring sentient spaces using an approximate POMDP policy[J]. Pervasive and Mobile Computing, 2014, 10: 83–103. doi: 10.1016/j.pmcj.2013.10.014
    胡波, 王祺尧, 冯辉, 等. 一种无线传感器网络中目标跟踪的自适应节点调度算法[J]. 电子与信息学报, 2018, 40(9): 33–41. doi: 10.11999/JEIT171154

    HU Bo, WANG Qiyao, FENG Hui, et al. Adaptive sensor scheduling algorithm for target tracking in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(9): 33–41. doi: 10.11999/JEIT171154
    ZHANG Zining and SHAN Ganlin. UTS-based foresight optimization of sensor scheduling for low interception risk tracking[J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(10): 921–931. doi: 10.1002/acs.2417
    万开方, 高晓光, 李波, 等. 基于部分可观察马尔可夫决策过程的多被动传感器组网协同反隐身探测任务规划[J]. 兵工学报, 2015, 36(4): 731–743. doi: 10.3969/j.issn.1000-1093.2015.04.023

    WAN Kaifang, GAO Xiaoguang, LI Bo, et al. Mission planning of passive networked sensors for cooperative anti-stealth detection based on POMDP[J]. Acta Armamentarii, 2015, 36(4): 731–743. doi: 10.3969/j.issn.1000-1093.2015.04.023
    ARASARATNAM I, HAYKIN S, and HURD T R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 4977–4993. doi: 10.1109/TSP.2010.2056923
    THARMARASA R, KIRUBARAJAN T, HERNANDEZ M L, et al. PCRLB-based multisensor array management for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 539–555. doi: 10.1109/taes.2007.4285352
    QIN A K, HUANG V L, and SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417. doi: 10.1109/tevc.2008.927706
    LI Genghui, LIN Qiuzhen, CUI Laizhong, et al. A novel hybrid differential evolution algorithm with modified CoDE and JADE[J]. Applied Soft Computing, 2016, 47: 577–599. doi: 10.1016/j.asoc.2016.06.011
    邱晓红, 胡玉婷, 李渤. 求解多处理器任务调度问题的改进差分进化算法[J]. 控制与决策, 2016, 31(2): 217–224. doi: 10.13195/j.kzyjc.2014.1418

    QIU Xiaohong, HU Yuting, and LI Bo. Multiprocessor task scheduling based on improved differential evolution algorithm[J]. Control and Decision, 2016, 31(2): 217–224. doi: 10.13195/j.kzyjc.2014.1418
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (2754) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return