Citation: | Huan ZHANG, Hong LEI. An Error Bound of Signal Recovery for Penalized Programs in Linear Inverse Problems[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2939-2944. doi: 10.11999/JEIT181125 |
ELDAR Y and KUTYNIOK G. Compressed Sensing: Theory and Applications [M]. Cambridge: Cambridge University Press, 2012: 210-268.
|
游康勇, 杨立山, 刘玥良, 等. 基于稀疏贝叶斯学习的网格自适应多源定位[J]. 电子与信息学报, 2018, 40(9): 2150–2157. doi: 10.11999/JEIT171238
YOU Kangyong, YANG Lishan, LIU Yueliang, et al. Adaptive Grid Multiple Sources Localization Based on Sparse Bayesian Learning[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2150–2157. doi: 10.11999/JEIT171238
|
王逸林, 马世龙, 王晋晋, 等. 基于稀疏重构的色噪声背景下未知线谱信号估计[J]. 电子与信息学报, 2018, 40(11): 2570–2577. doi: 10.11999/JEIT171040
WANG Yilin, MA Shilong, WANG Jinjin, et al. Estimation of unknown line spectrum under colored noise via sparse reconstruction[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2570–2577. doi: 10.11999/JEIT171040
|
STARCK J L, MURTAGH F, and FADILI J. Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis[M]. Cambridge: Cambridge University Press, 2016.
|
BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006.
|
CANDES E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.2012
|
CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925–936. doi: 10.1109/JPROC.2009.2035722
|
DONOHO D L, MALIKI A, and MONTANATI A. The noise-sensitivity phase transition in compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(10): 6920–6941. doi: 10.1109/TIT.2011.2165823
|
BAYATI M, LELARGE M, and MONTANARI A. Universality in polytope phase transitions and message passing algorithms[J]. Annals of Applied Probability, 2015, 25(2): 753–822. doi: 10.1214/14-AAP1010
|
CHANDRASEKARAN V, RECHT B, PARRILO P A, et al. The convex geometry of linear inverse problems[J]. Foundations of Computational Mathematics, 2012, 12(6): 805–849. doi: 10.1007/s10208-012-9135-7
|
AMELUNXEN D, LOTZ M, MCCOY M B, et al. Living on the edge: phase transitions in convex programs with random data[J]. Information and Inference: A Journal of the IMA, 2014, 3(3): 224–294. doi: 10.1093/imaiai/iau005
|
OYMAK S and TROPP J A. Universality laws for randomized dimension reduction, with applications[J]. Information and Interference, 2017, 7(3): 337–446. doi: 10.1093/imaiai/iax011
|
NAGAHBAN S N, RAVIKUMAR P, WAINWRIGHT M J, et al. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[J]. Statistical Science, 2012, 27(4): 538–557. doi: 10.1214/12-STS400
|
THRAMPOULIDIS C, ABBASI E, and HASSIBI B. Precise high-dimensional error analysis of regularized m-estimators[C]. The 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2015: 410–417. doi: 10.1109/MASS.1995.528223.
|
ZHANG Han, LIU Yulong, and LEI Hong. On the phase transition of corrupted sensing[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 521–525. doi: 10.1109/ISIT.2017.8006582.
|
CHEN Jinchi and LIU Yulong. Corrupted sensing with sub-Gaussian measurements [C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 516–520. doi: 10.1109/ISIT.2017.8006581.
|
FOYGEL R and MACKEY L. Corrupted sensing: Novel guarantees for separating structured signals[J]. IEEE on Transactions on Information Theory, 2014, 60(2): 1223–1247. doi: 10.1109/TIT.2013.2293654
|
ROCKAFELLAR R T. Convex Analysis[M]. Princeton: Princeton University Press, 1970.
|
GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.1[OL]. http://cvxr.com/cvx, 2014.
|