Citation: | Lisheng YIN, Shengqi TANG, Sheng LI, Yigang HE. Traffic Flow Prediction Based on Hybrid Model of Auto-Regressive Integrated Moving Average and Genetic Particle Swarm Optimization Wavelet Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2273-2279. doi: 10.11999/JEIT181073 |
DARAGHMI Y A, YI C W, and CHIANG T C. Negative binomial additive models for short-term traffic flow forecasting in urban areas[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 784–793. doi: 10.1109/TITS.2013.2287512
|
《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1–161. doi: 10.19721/j.cnki.1001-7372.2016.06.001
Editorial Department of China Journal of Highway and Transport. Review on China’s traffic engineering research progress·2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1–161. doi: 10.19721/j.cnki.1001-7372.2016.06.001
|
TSELENTIS D I, VLAHOGIANNI E I, and KARLAFTIS M G. Improving short-term traffic forecasts: to combine models or not to combine?[J]. IET Intelligent Transport Systems, 2014, 9(2): 193–201. doi: 10.1049/iet-its.2013.0191
|
LIPPI M, BERTINI M, and FRASCONI P. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 871–882. doi: 10.1109/TITS.2013.2247040
|
李松, 刘力军, 解永乐. 遗传算法优化BP神经网络的短时交通流混沌预测[J]. 控制与决策, 2011, 26(10): 1581–1585. doi: 10.13195/j.cd.2011.10.144.lis.006
LI Song, LIU Lijun, and XIE Yongle. Chaotic prediction for short-term traffic flow of optimized BP neural network based on genetic algorithm[J]. Control and Decision, 2011, 26(10): 1581–1585. doi: 10.13195/j.cd.2011.10.144.lis.006
|
谭满春, 冯荦斌, 徐建闽. 基于ARIMA与人工神经网络组合模型的交通流预测[J]. 中国公路学报, 2007, 20(4): 118–121. doi: 10.3321/j.issn:1001-7372.2007.04.021
TAN Manchun, FENG Luobin, and XU Jianmin. Traffic flow prediction based on hybrid ARIMA and ANN model[J]. China Journal of Highway and Transport, 2007, 20(4): 118–121. doi: 10.3321/j.issn:1001-7372.2007.04.021
|
崔青华, 夏井新. 基于ARIMA-GARCH模型的城市主干道行程时间时变置信区间预测[J]. 东南大学学报 (英文版), 2014, 30(3): 358–362. doi: 10.3969/j.issn.1003-7985.2014.03.019
CUI Qinghua and XIA Jinxin. Time-varying confidence interval forecasting of travel time for urban arterials using ARIMA-GARCH model[J]. Journal of Southeast University (English Edition)
|
STOEAN R, STOEAN C, and SANDITA A. Evolutionary regressor selection in ARIMA model for stock price time s-eries forecasting[C]. International Conference on Intelligent Decision Technologies, Sorrento, Italy, 2017: 117–126.
|
PAVLYUK D. Short-term traffic forecasting using multivariate autoregressive models[C]. Procedia Engineering, Riga, Latvia, 2017: 57–66.
|
LUO Xianglong, NIU Liyao, and ZHANG Shengrui. An algorithm for traffic flow prediction based on improved SARIMA and GA[J]. KSCE Journal of Civil Engineering, 2018, 22(10): 4107–4115. doi: 10.1007/s12205-018-0429-4
|
HU Wenbin, YAN Liping, LIU Kaizeng, et al. A short-term traffic flow forecasting method based on the hybrid PSO-SVR[J]. Neural Processing Letters, 2016, 43(1): 155–172. doi: 10.1007/s11063-015-9409-6
|
ZHANG Hong, WANG Xiaoming, Cao Jie, et al. A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series[J]. Applied Intelligence, 2018, 48(10): 3827–3838. doi: 10.1007/s10489-018-1181-7
|
HANG Yang, ZOU Yajie, WANG Zhouyu, et al. A hybrid method for short-term freeway travel time prediction based on wavelet neural network and markov chain[J]. Canadian Journ-al of Civil Engineering, 2018, 45(2): 77–86. doi: 10.1139/cjce-2017-0231
|
刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8): 2041–2046. doi: 10.3969/j.issn.1000-6788.2013.08.018
LIU Sifeng, CAI Hua, YANG Yingjie, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering Theory and Practice, 2013, 33(8): 2041–2046. doi: 10.3969/j.issn.1000-6788.2013.08.018
|
1. | 于卫刚,徐少坤,吴昌松,袁翔宇. 基于特征提取的ISAR成像欺骗干扰评估方法研究. 航天电子对抗. 2024(03): 16-20 . ![]() | |
2. | 韩立珣,田波,冯存前. 基于MIMO-ISAR的弹道目标结构参数估计方法. 系统工程与电子技术. 2020(03): 603-612 . ![]() | |
3. | 霍超颖,殷红成,邢笑宇,满良. 基于雷达图像特征的空间目标载荷指向估计方法. 电波科学学报. 2019(01): 45-51 . ![]() | |
4. | 鲁逸杰,宫志华,张群,王剑钦,李开明. 基于变分模态分解的进动目标微多普勒特征提取方法. 探测与控制学报. 2019(04): 30-35 . ![]() | |
5. | 任枫轩,王忠勇. 基于ISAR像序列的多旋翼无人机参数估算. 电光与控制. 2018(04): 55-60 . ![]() | |
6. | 王超,叶春茂,文树梁. 低重频宽带雷达中小幅微动目标的周期估计. 系统工程与电子技术. 2018(09): 1945-1952 . ![]() | |
7. | 徐少坤,刘记红,袁翔宇. 基于HRRP序列的中段目标二维几何特征反演方法. 电子与信息学报. 2017(10): 2366-2373 . ![]() | |
8. | 刘浩,杨清亮,陈佳东. 近程弹道导弹防御目标识别技术研究. 飞航导弹. 2017(06): 73-77 . ![]() | |
9. | 束长勇,张生俊,黄沛霖,姬金祖. 基于微多普勒估计进动锥体目标特征参数. 系统工程与电子技术. 2017(01): 15-20 . ![]() | |
10. | 王英,束长勇,张生俊,黄沛霖,姬金祖. 快慢时间域间歇采样转发干扰生成进动锥体ISAR群阵列. 电子与信息学报. 2016(02): 450-454 . ![]() | |
11. | 周叶剑,张磊,王虹现,邢孟道,牛威. 多站ISAR空间目标姿态估计方法. 电子与信息学报. 2016(12): 3182-3188 . ![]() | |
12. | 黄小红,文贡坚. L波段雷达电离层高速运动目标ISAR成像补偿方法. 电子与信息学报. 2015(12): 2971-2976 . ![]() |